
1

SPECCTRA tools
Autorouting Commands

Product Version 9.0
September 1999

 1996-1999 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc.
(Cadence) contained in this document are attributed to Cadence with the appropriate
symbol. For queries regarding Cadence’s trademarks, contact the corporate legal
department at the address shown above or call 1-800-462-4522.

All other trademarks are the property of their respective holders.

SPECCTRA is a registered trademark, and SourceLink is a trademark of Cadence
Design Systems, Inc.

Restricted Print Permission: This publication is protected by copyright and any
unauthorized use of this publication may violate copyright, trademark, and other laws.
Except as specified in this permission statement, this publication may not be copied,
reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way,
without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and
noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original
copyright, trademark, and other proprietary notices and this permission
statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any
such use shall be discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does
not represent a commitment on the part of Cadence. The information contained herein is
the proprietary and confidential information of Cadence or its licensors, and is supplied
subject to, and may be used only by Cadence’s customer in accordance with, a written
agreement between Cadence and its customer. Except as may be explicitly set forth in
such agreement, Cadence does not make, and expressly disclaims, any representations
or warranties as to the completeness, accuracy or usefulness of the information

2

contained in this document. Cadence does not warrant that use of such information will
not infringe any third party rights, nor does Cadence assume any liability for damages or
costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its
successor.

3

Table of Contents

Overview .. 21
About SPECCTRA Commands...21
Command Syntax Conventions...21
Conventions Used in This Manual...22

Autorouting Command Reference.. 24
assign_pin ..24

source ..24
load ..24
terminator...24
expose ...24
noexpose ...24
composite...25

<prefix> ...25
<begin_index>...25
<end_index>..25
<step> ...25
<suffix>..25

pins ..25
assign_supply ...26

selected..27
selected_wire ...27
pin ..27
image_pin ..27
wide_wire ...27

autosave...28
bestsave ...29
bus..29
cct_cmd ..30
cct_mode ..31
center ...31
change..32

smd_escape...32
min_shield..32

change_width_by_rule ..33
check_area ...33
check ..34

type ..34
include..34
exclude...34
<check_type>...34
<check_type>...36

conflict ...36
length ..36
limit_way..36
max_vias ...36

4

miter ..36
order..36
pin ...36
polygon_wire ...36
protected ...37
same_net_check ...37
stagger ..37
stub ...37
use_layer...37
use_via..37
xtalk...37

circuit ..38
net..38
class...38
group..38
group_set ...38
selected..38
Circuit rules overview ...40
<delay_descriptor>...41

max_delay ...41
min_delay ..41
<delay_value> ...41

<length_descriptor> ...41
length ..41
<max_length>..42
<min_length>...42
type ...42

<match_fromto_delay_descriptor> ...42
match_fromto_delay ..42
tolerance..43
<delay_value> ...43

<match_fromto_length_descriptor> ..43
match_fromto_length...43
tolerance..43
ratio_tolerance...43

<match_group_delay_descriptor> ..43
match_group_delay ...44
tolerance..44
<delay_value> ...44

<match_group_length_descriptor> ...44
match_group_length..44
tolerance..44
ratio_tolerance...44

<match_net_delay_descriptor> ..45
match_net_delay ...45
tolerance..45
<delay_value> ...45

<match_net_length_descriptor> ...45
match_net_length ..45
tolerance..45

5

ratio_tolerance...46
<max_restricted_layer_length_descriptor>...46

max_restricted_layer_length..46
total ...46

<priority_descriptor> ..47
<sample_window_descriptor> ..47
<shield_descriptor>..47

shield...47
type ...48
use_net ...48

<switch_window_descriptor>..48
<total_delay_descriptor> ..49

max_total_delay ..49
min_total_delay ...49
<delay_value> ...49

<total_length_descriptor>...49
max_total_length ...49
min_total_length ..49

<use_layer_descriptor>..50
<use_via_descriptor> ...50

use_via..50
use_array ..50

<row>..51
<column>..51

clean...51
component_pin_property ..52

<property_name>...52
component_property ...52

<physical_property_descriptor> ...54
type ...54
height ..55
power_dissipation..55

<electrical_value_descriptor>...56
<user_property_name> ..56

cost...56
way ..57
cross ..57
via ..57
off_grid...57
off_center ...57
side_exit...57
squeeze ...57
<cost_descriptor>...57
layer ...58

type ...58
critic ..59
Define Commands ..59
define bundle ..60

bundle ..60
gap...60

6

layer ...61
nets ..61
add_net ..61
remove_net ..61

define class...61
class...62
rule...62
circuit ...62
<nets_descriptor> ..63

composite ..63
selected...64
add_net ...64
add_selected_nets ..64
remove_net ...64
remove_selected_nets...64

<layer_rule_descriptor>..64
layer_rule...64
rule ..64

<topology_descriptor>..65
topology...65
<fromto_descriptor> ..65
comp_order ...65

define class_class...65
class_class ..65
classes ..65
directional ..66
layer_rule...66

define group..66
group ...66
<fromto_descriptor> ..67
selected...67
layer_rule...67
rule ..67
circuit ...67
add_fromto ..67
add_selected_fromtos ...67
remove_fromto ..67
remove_selected_fromtos ...67

define group_set ...68
group_set ..69
composite ..69
layer_rule...70
add_group ...70
add_selected_groups ..70
remove_group ...70
remove_selected_groups ..70

define keepout ..71
keepout ...71
place_keepout ...71
wire_keepout ...71

7

bend_keepout..71
via_keepout ...72
elongate_keepout ..72
<rectangle_descriptor> ..73

rect..73
<vertex>..73

<circle_descriptor> ..73
circle ...73
<diameter>..74

<polygon_descriptor> ..74
polygon ...74
<aperture_width> ..74

define layer_noise_weight ..74
layer_noise_weight ..75
layer_pair ...75
<layer_weight>...75

define net..75
net..76
<fromto_descriptor> ...76
comp_order..76
order ..76
expose ...76
noexpose ...77
source ..77
load ..77
terminator...77
layer_rule ...77
add_pins ..77

define padstack...78
padstack...78
via_site...78
attach ...78
use_via...78

define pair...79
pair...79
nets ..79
selected..79
gap...79
layer ...79
wires ..79
<fromto_descriptor> ...80

define region...80
region...80
rect...81
polygon ..81
region_net ..81
region_class...81
region_class_class...81

<fromto_descriptor>..83
<virtual_pin_descriptor> ...83

8

net..83
layer_rule ...83

<virtual_pin_descriptor>..83
virtual_pin...84
<virtual_pin_name>..84
position...84
radius ...84

defkey...84
<keyname> ..84
shift ..84
ctrl ..84
<command> ...85

delete..86
all wires ..86
all poly_wires..87
all regions...87
selected..87
selected poly_wires..87
conflicts ..87

-segment ...87
include fast ..87

net..87
region...87
wirebond ..88
fence ..88
incomplete_wires ...88
incomplete_wires net..88
testpoints..88

did_file ..89
off...89
on...89
suspend ...89
resume...89

direction ..90
do ...92
evaluate ..93
fanout ...93

<passes> ...94
direction ...94
location...95
pin_share ...95
smd_share ...95
via_share ...95
<maximum_connections> ..95
share_len ...95
via_grid ..95
direction ...96
offset ..96
smart_via_grid..96
depth..96

9

max_len ...96
pin_type ...96

active...96
signal...97
power ..97
unused ..97
exclude_through_pin ...97
all...97
single...97

Microvia fanout under SMD pads ...100
fence...100
filter...101
fix/unfix ...101

selected..102
net..102
class...102

forget ..103
class...103
net..103
order_only ..103
group..104
group_set ...104
pair...104

<fromto_descriptor> ..104
keepout ..104

<area_descriptor> ...104
<property_object_descriptor>...104

property ...104
bundle ..104
<area_descriptor> ..107

layer ..107
type ...107

<property_object_descriptor>...108
component_pin_property ...108
component_property..108
image_pin_property...109
image_property..109
layer_property ...109
net_property ..109

grid route_major_factor...109
grid smart..110

wire ..110
via ..110
direction ...110
offset ..110

grid snap...111
direction ...111
offset ..111

grid via..112
direction ...112

10

offset ..112
grid via_keepout ...113

direction ...113
offset ..113

grid wire ..113
direction ...114
offset ..114

highlight ..114
bend...115
component ...115
color <color_name> ...115
net..115
no_fanout ...116
no_testpoint ...116
off_grid...116
incomplete_wires ...116
redundant_wires...116
shield ...116
no_shield..116
wrong_width...116
off...116
testpoint_antennas...116
testpoint_violations...117
power_fanout_order_violations ..117
order_violation..117
stack_via ..117
shield_tie_down_interval_overrun ..117

if..118
image_pin_property ..119

<property_name>...119
image_property...120

<family_descriptor>..121
<physical_property_descriptor> ...121

type ...122
height ..122
power_dissipation..122

<user_property_name> ..123
layer_property...124

<property_name> ..124
license usage..124
limit ...125

cross ..125
via ..125
bend...125
way ..125

miter ...126
pin <setback>...126
slant <setback> ..126
tjunction <setback> ..126
bend <start_setback> <final_setback> ...126

11

style ...127
layer <layer_name> ...127

mode ..129
<interactive_routing_mode>...129
<interactive_placement_mode> ...129
Interactive routing modes ...130

change_conn...131
change_polygon ..131
change_via ..131
change_wire ..131
check_area..132
copying..132
copy polygon ...132
critic wire ...132
cut ...132
cut_polygon ...132
delete ..132
edit ..133
edit topology ..133
highlight ...133
measure ..134
merge keepout...134
merge poly_wire ..134
repair net ...134
rotate_via...134
select...134
slide...134

Draw modes...134
net_property ...136

<property_name>...136
order ...137

starburst ...137
daisy ..137

type ...137
selected..137
all_net ..137
net..137

protect/unprotect...138
all ...139
all poly_wires..139
all wires ..139
selected_wires ...139
layer_wires...139
class...139
net..140
selected_poly_wires...140
attr..140
attr..140
type soft ...140
type_route_mode ...140

12

quit..141
read colormap...142

colormap ..142
read keepout...142

keepout ..142
read routes ...143

routes...143
ignore_net ..143
type ..143

read wire...143
wire ..144
type ..144

recorner ..144
pin ..144
slant ...145
bend...145
round..145
diagonal ...145

<setback>..145
undo/redo ...146
reduce_padstack ..147

on...147
auto..147
off...147

release license..147
repaint ..148
report ..149

<report_type>...149
file ..149
design ..150
invocation...150
selected_objects ..150
<report_type>...151

class ..151
class_class ..151
component...151
corners ..152
crosstalk ..152
ecl..152
group ...152
group_set ..152
keepouts..152
layer ..153
length ..153
net ...153
net bundles..153
no_fanout ..153
order_violations ...154
padstack..154
pairs ..154

13

power_fanout_violations ..154
property ...154
regions ..154
stack_via_depth...155
status...155
testpoint...155
unconnect..155
vias..156

report conflict ..156
conflict..156
type ..156

report network...157
network ..157

-name ..157
-length ...157
-ratio ..157
-extra ...158

report rules ...158
rules ...159
include..159

route ...160
<passes> ...160
<start_pass> ..160
remove...160

rule ...162
pcb ...162
layer ...162
class...163
group_set ...163
net..163
group..163
class_class...163
directional...163
padstack...163
region...163
selected..164
Rules overview...166
<allow_redundant_wiring_descriptor> ..167
<clearance_descriptor>..167

type ...168
smd_via_same_net...169
via_via_same_net ...169
antipad_gap ..169
pad_to_turn_gap...169
smd_to_turn_gap ..169
buried_via_gap ...169
layer_depth ...169

<effective_via_length_descriptor>..169
<inter_layer_clearance_descriptor> ...170

type ...170

14

layer_pair...170
layer_depth..170

<junction_type_descriptor> ..171
<length_amplitude_descriptor> ..172
<length_factor_descriptor>...172
<length_gap_descriptor>..172
<limit_bends_descriptor> ...173
<limit_crossing_descriptor>..173
<limit_vias_descriptor>...174
<limit_way_descriptor>...174
<max_noise_descriptor> ..174

max_noise ...175
<max_stagger_descriptor>...175
<max_stub_descriptor>..175
<max_total_vias_descriptor>..176
<parallel_noise_descriptor> ...176

parallel_noise ..176
gap ..177
threshold..177
weight ..177

<parallel_segment_descriptor> ..178
parallel_segment ...178
gap ..178
limit..178

<pin_width_taper_descriptor> ..179
<power_fanout_descriptor>..180

pin_cap_via ...180
pin_via_cap ...180
none ..180

<reorder_descriptor>..181
starburst ..181
daisy..181

type...181
<restricted_layer_length_factor_descriptor>...182
<saturation_length_descriptor> ..182
<shield_gap_descriptor> ..183
<shield_loop_descriptor> ...183
<shield_tie_down_interval_descriptor> ..184
<shield_width_descriptor>..184
<spiral_via_descriptor> ..184

min_gap...184
<stack_via_depth_descriptor>..185
<stack_via_descriptor> ..185
<staggered_via_descriptor> ...185

min_gap...186
max_gap..186

<staired_via_descriptor> ..186
min_gap...186
max_gap..186

<tandem_noise_descriptor> ...187

15

tandem_noise..187
gap ..187
threshold..187
weight ..188

<tandem_segment_descriptor>..188
tandem_segment...189
gap ..189
limit..189

<tandem_shield_overhang_descriptor> ...189
<testpoint_rule_descriptor>..190

insert ...190
grid ..191

direction ..191
offset...191

side..191
use_via..191
center_center ..191
comp_edge_center..191
image_outline_clearance...192
allow_antenna ...192
pin_allow ...192
max_len...192

<time_length_factor_descriptor> ..194
<tjunction_descriptor> ..195
<via_at_smd_descriptor> ...195

via_at_smd..195
grid ..195
fit ...196

<width_descriptor>...196
seedvia ...197

-force..197
select/unselect ..197

group..198
group_set ...198
class...198
net..198
component ...198
type ..199
layer ...199
via ..199
layer_wires...199
pins ..199
bundle ..199
incomplete_wires ...199
shielding...200
shield_tie_downs..200
unrouted_shield_tie_downs..200

select/unselect all ...201
nets ..202
components ...202

16

side..202
groups..202
group_sets ...203
layers ...203
vias ..203
poly_wires ..203
wires ..203
shields..203
pairs ...203
length_rule ...203
length_error..203
unroutes...203
pins ..203

net ...204
objects ...204
routing..204
placement ..204
bundle ..204

select/unselect all objects ...206
objects ...206
placement ..206
routing..206

select/unselect area..206
net..207
wire ..207
poly_wire..207
guide ..207
pin ..207
component ...207
type ..207
toggle ...208

select/unselect fromto ...209
degree..209
area..209
length ...209
cross ..209

select/unselect pin ..210
all pins..210
layer ...210
pins ..210
equivalent...210

set...211
<condition> ..213

auto_merge_polygon...213
average_pair_lengths ..213
bbv_ctr2ctr...213
crosstalk_model...214
diagonal_mode..214
dofile_auto_repaint ..215
dynamic_pinswap ..215

17

dynamic_zoom ..216
edit_abort_uses_undo ...216
force_to_terminal_point ...216
gather_wires..217
graphing ..217
include_pins_in_crosstalk..217
microvia...217
min_selection ..218
noise_accumulation...218
noise_calculation ...219
repaint ...219
reroute_order_viols..219
rotate_jumper_via..220
roundoff_rotation ...220
routability_colors..220
same_net_checking...221
search_tapering...221
shadow_mode ...221
show_snap_grid_cursor...222
soft_fence..222
stub_viols_costs ..223
swap_fanouts ..223
tandem_depth ...224
unknown_user_property_warning..224
update_interval ..224
via_to_layer_pattern ..225
write_permission..225

Set conditions overview..225
setexpr..227
set_focus ..228
setup_check ...228

<check_type>...228
<check_type>...229

conflict ...229
length ..230
limit_way..230
max_vias ...230
miter ..230
order..230
pin ...230
polygon_wire ...230
protected ...230
same_net_check ...230
stagger ..231
stub ...231
use_layer...231
use_via..231
xtalk...231

sh..231
shield ..232

18

show component_labels ...233
type ..233
side ..234

show unroutes ..234
all ...235
placed ..235
last ...235
front..235
back ...235
between ...235
selected..235
highlighted..235

skill_cmd...236
skill_mode...236

System variables..237
smart_route ..239

min_via_grid...239
min_wire_grid...240

direction...240
offset ...240

auto_fanout ..240
auto_fanout_via_share...240
auto_fanout_pin_share...240
auto_fanout_smd_share...240
auto_miter ..241
auto_testpoint ..241

side..241
grid ..241

direction ..242
offset...242

sort ...243
smart..243
random...243
length ...243
area..244

spread ..244
extra...244
type ..244
keep_notch ..245

status_file ...246
stop...246
tax...247

way ..247
cross ..247
via ..247
off_grid...247
off_center ...247
side_exit...248
squeeze ...248
layer ...248

19

testpoint ..249
grid...250

direction...250
offset ...250

side ..250
use_via...251
center_center ...251
comp_edge_center ..251
image_outline_clearance ...251
allow_antenna..251
pin_allow ..251
max_len ...251
use_rules ...252

unit..254
unmiter ...254
view ..255

<signal_layer_id> ...255
<system_layer>..255
<system_layer>..256

component_labels ...256
error...256
grid ..256
keepout ...257
origin ...257
pin ...257
power ..257
power_pins ..257
region ..257
site...257
unroute ..257
via..257
via_grid..257
wire..257

view grid ...257
lines ...258
dots ..258

vset...258
<signal_layer_id> ...258
<system_layer>..258
<system_layer>..260

component_labels ...260
error...260
grid ..260
keepout ...260
origin ...260
pin ...260
power ..260
power_pins ..260
region ..260
site...260

20

unroute ..261
via..261
via_grid..261
wire..261

while ...261
wildcard ..262
wirebond ...262

bond...262
write..263

session...263
comment..263
include...263

routes...264
wire ..264

include...264
exclude..264
type ...264

network ..264
padstacks...264
conflicts ..265
corner...265
<file_permissions> ...266

permission ...266
group ...266
public...266

Session file...267
Routes file ..267
Wire file ..267

write colormap ..267
colormap ..268
form..268

write environment ...269
environment ...269

write keys..270
keys ...270

21

Overview
This book contains autorouting command reference information that is derived from
the SPECCTRA 9.0 online help. The original design intent and organization of
information in this document is for online access. For more complete information,
refer to the SPECCTRA online help (by clicking on the Help menu). The SPECCTRA
online help includes placement and other command references not included in this
book and user interface information, procedures, and general purpose information.
Online books are also accessible from the Help menu.

About SPECCTRA Commands

The autorouting command reference provides syntax diagrams, general descriptions,
and examples for SPECCTRA commands.

See Syntax Conventions in this section for an introduction to the conventions used in
the syntax diagrams.

To use a command in SPECCTRA, you can

• Type the command in the command entry area

• Include the command in a do file

You can enter multiple commands on the same line by separating them with
semicolons. SPECCTRA performs the commands sequentially. For example, to route
25 routing passes and 2 clean passes, enter

route 25;clean 2

You can also use SPECCTRA menus and dialog boxes to apply commands. The
SPECCTRA online help provides information about using menus and dialog boxes.

If you set or modify rules during a SPECCTRA session, and want to use them in
another session, you can modify the did file and use it as a do file. After the session,
open the did file in a text editor, and remove any command you do not want to use in
the do file.

If you are a new SPECCTRA user, you should also read about design object names,
file naming conventions, and the SPECCTRA design rule hierarchy in the
SPECCTRA online help.

Command Syntax Conventions

The following symbols and example explain the symbols used to diagram
SPECCTRA syntax.

22

Conventions Used in This Manual

The following fonts, characters, and styles have specific meanings throughout this
manual.

• Boldface type identifies text that you type exactly as shown, such as
SPECCTRA command names, keywords, and other syntax elements. In the
following example, average_pair_length, on, and off are keywords.

(average_pair_length [on | off])

Syntax or command examples that appear on a separate line are not bold.

(boundary (rect pcb 0 0 9000 4000))

For information about the Backus-Naur Form (BNF) metalanguage conventions
used to represent the design language, see SPECCTRA Design Language
Reference.

• Italic type identifies titles of books and emphasizes portions of text.

See the SPECCTRA Installation and Configuration Guide for information
about installing SPECCTRA.

23

Italicized words enclosed in angle brackets (<>) are placeholders for keywords,
values, filenames, or other information that you must supply.

<directory_path_name>::= <id>

• References to keys on your keyboard and mouse buttons are enclosed in
brackets. [Shift] refers to the shift key. The carriage return key is labeled
"Enter" on some keyboards and "Return" on others. This manual uses [Enter].

The following special terms are used in this manual.

• The word enter used with commands means type the command and press
[Enter].

“Enter the command grid wire 1” means

1. Type grid wire 1.

2. Press [Enter].

• Click means press and release the left mouse button.

• Click-middle means press and release the middle mouse button.

• Click-right means press and release the right mouse button.

• Drag means press and hold the left mouse button while you move the pointer.

• Drag [MB] means press and hold the middle mouse button while you move the
pointer.

• Double-click means press and release the left mouse button twice in rapid
succession.

• Click twice means click twice at the same location in the SPECCTRA work
area.

• Select means to identity objects (such as wires, nets, or components) for
exclusive processing by routing or placement commands. When you select
objects before using a command, the autorouter works only on the objects that
are selected.

• Switch refers to one or more characters you can use with an operating system
command, such as the command you use to start SPECCTRA. A hyphen (-)
precedes each command line switch.

24

Autorouting Command Reference
This section provides syntax drawings, general descriptions, and examples of
SPECCTRA autorouting commands. The commands appear in alphabetical order.

assign_pin

The assign_pin command assigns source, load, terminator, and expose properties to
component pins.

source

A property assigned to pins for daisy-chain routing.

load

A property assigned to pins for daisy-chain routing. All pins default to load unless the
source or terminator property is assigned.

terminator

A property assigned to pins for daisy-chain routing.

expose

An attribute that forces a through-pin escape to a via on an external PCB layer. The
expose attribute applies to through-pins only.

noexpose

An attribute that removes the expose attribute for the specified pins so that fanout
does not generate vias for those pins.

25

composite

Identifies a list of pin names that match the <begin_index>, <end_index>, <step>,
and optional <prefix> and <suffix> parameters.

<prefix>

A non-numeric character or character string that represents a pin number prefix. For
example, A or 1A.

<begin_index>

Pin number of the first pin in the list.

<end_index>

Pin number of the last pin in the list.

<step>

Increment that determines pins included between the start index pin and the end
index pin.

<suffix>

A single character or character string that represents a pin number suffix. For
example, B or BB.

pins

Identifies a list of pins by <pin_id>. The <pin_id> must not contain a hyphen.

The assign_pin command provides an efficient way to specify large numbers of
daisy-chained nets in source-load-terminator format.

When you assign the expose property to a through-pin, the pin escapes to a via on
an external PCB layer. If the autorouter needs to connect on an internal layer, it
routes to the via.

By specifying direction with the fanout command you can control whether through-
pins with the expose property escape outside the component outline. You can direct
the autorouter to escape wires and vias inside the component outline (in), outside
(out), or both (in_out). When the in_out option is set for fanout (default), exposed
pins escape outside the component outline. See the fanout command.

The assign_pin command is particularly effective when several nets start as sources
on multiple components and terminate on another set of components.

The following describes a strategy for using assign_pin.

To specify a large number of daisy-chained nets in source-load-
terminator format.

1. Change the property to source for a large number of pins on one or more
components by using the assign_pin source command. For example:

26

assign_pin source U27 U28 U29

2. Change the property to terminator for a second group of pins by using the
assign_pin terminator command. For example:

assign_pin terminator RN27 RN28 RN29

Pins that are not assigned source or terminator properties default to load.

3. Reorder the affected pins for daisy-chain routing by using the order command. For
example:

order daisy net sig1 sig2 sig3

You can also use the define class command to create a class of nets and order them
as daisy-chain. When you order a net for daisy-chain routing, multiple source and
terminator pins are optimally chained.

4. Reset the components that were not ordered as daisy-chain to the load property
by using the assign_pin load command. For example:

assign_pin load U27 U28 U29

See also the define net command which can be used to control the exact pin order for
a net.

Command examples

assign_pin source U200 (pins 2 3 5 7 8)
assign_pin load U201 (composite A 2 20 2)
assign_pin terminator R???

assign_pin source U200
assign_pin terminator U400
order daisy net clock
assign_pin load U200 U400

assign_pin expose U202
assign_pin noexpose U202 (pins 4 6)

assign_supply

The assign_supply command identifies the component pins or wires of a power net
as a supply trunk. The unassign_supply command returns component pins or wires
to normal status.

27

selected

Use this option to create a trunk that includes all currently selected wires and
component pins.

selected_wire

Use this option to create a trunk that includes only currently selected wires.

pin

Use this option to create a trunk that includes a component pin that you specify. The
<pin_reference> consists of a component name, a hyphen, and a pin name.

image_pin

Use this option to assign all pins on the net with the specified <pin_name> to the
supply trunk. Use the image option to assign only pins on the specified <image_id>.

wide_wire

Use this option to assign existing wires in the net to the supply trunk if the wire width
is at least <min_width>.

This command identifies certain component pins or selected wires that must be
routed directly to the power source. You identify the name (<net_id>) of the power net
and the pins or wires that constitute the supply trunk. A trunk can consist of one or
more specific component pins, selected pins and wires, or just selected wires.

• Use selected to create the trunk with all currently selected component pins and
wires. You must select the pins or wires before using assign_supply.

• Use selected wires to create the trunk with all currently selected wires. You must
select the wires before using assign_supply.

• Use pin to create the trunk with a specific component pin. The <pin_reference>
consists of a component name, a hyphen, and a pin number.

• Use image_pin to assign specified image pins to the supply trunk.

28

• Use wide_wire to assign existing wires in the net to the supply trunk if the wires
are equal to or greater than the specified width.

Note

The pins or wires need not be interconnected, but the autorouter must connect other
pins on the net to a point on the supply pin or trunk.

Use the image_pin keyword without the image option to assign all pins named
<pin_name> in the specified net.

You can also use this command to treat pins and wires of any net as a trunk.

See also

junction_type rule to control routing topology for any pins and wires defined as a trunk
with the assign_supply command.

Examples

assign_supply vcc (pin C1-A)
unassign_supply vcc (pin C1-A)

assign_supply vcc (selected)
unassign_supply vcc (selected)

assign_supply vcc (selected_wires)
unassign_supply vcc (selected_wires)

assign_supply vcc (image_pin vcc)
unassign_supply vcc (image_pin vcc)

assign_supply vcc (wide_wire (layer M1 (min_width 10)))
unassign_supply vcc (wide_wire (layer M1 (min_width 10)))

assign_supply vcc (wide_wire (layer M1 (min_width 10)) (layer M2 (min_width 20)))
unassign_supply vcc (wide_wire (layer M1 (min_width 10)) (layer M2 (min_width 20)))

autosave

The autosave command controls whether wires are saved after each routing pass.

This command turns the autosave function on and off. If the function is turned on,
the autorouter writes the wiring results to a file at the end of each routing pass. This is
an overwrite process. At the end of an autorouting session, or in the event of a
system crash, the results of the most recent wiring pass are in the autosave file. You
can use the autosave file to recover. The default filename is autosave.w.

Use the write wire command instead of autosave to save wires at the end of a
session. This protects your final wires file from an accidental overwrite during a
subsequent autorouting session.

29

See also the bestsave command, which is preferred over autosave.

Command examples

autosave on
autosave on mysave.w

For general information about specifying filenames, see File Naming Conventions.

bestsave

The bestsave command controls whether wires are saved when there is a routing
improvement.

This command turns the bestsave function on and off. When bestsave is on, the
autorouter writes the routed wires at the end of each routing pass if the wiring has
improved since the previous bestsave.

SPECCTRA calculates a routing pass-score as follows:

pass-score = crossing violations
 + clearance violations
 + crosstalk violations
 + length violations
 + 2 * unroutes

Use the wires file that is created by bestsave to recover your work in the event of a
power failure. The default filename is bestsave.w.

The bestsave command does not replace the write wire command, which is used at
the conclusion of an autorouting session. See the write wire command.

You load the wires to restart an autorouting session by using the read wire command.

Command examples

bestsave on
bestsave on mysave.w

For general information about specifying filenames, see File Naming Conventions.

bus

The bus command uses a special algorithm to route component pins that share the
same X or Y coordinates.

The bus command directs the autorouter to route regular arrays of pins such as
those that interconnect memory devices. The autorouter determines which nets are

30

candidates for bus routing and then routes these connections. Clearance rules must
permit sufficient space to allow bus routing without conflicts.

If you use the bus command without the diagonal option, buses are routed
orthogonally. Bus-diagonal routing is preferred because it provides the highest routing
density.

An example of bus diagonal routing is shown in the following illustration.

Command examples

bus
bus diagonal

cct_cmd

The cct_cmd command allows you to issue SPECCTRA commands while the
command entry area is set to SKILL mode (see skill_mode).

Thus, the cct_cmd command is useful when executing SKILL do files. To enter
multiple SPECCTRAcommands, separate the commands with a semicolon (;).

Command examples

skill_mode
printf(“ total components = %d\n” totalcomp)
for (i 0 5{cct_cmd(“z out”)})
cct_mode

skill_mode
cct_cmd(“z out 2; repaint”)

See also

skill_cmd
skill_mode
cct_mode

31

cct_mode

The cct_mode command sets the SPECCTRA command entry area to accept
SPECCTRA commands. You typically use this command to exit SKILL mode (see
skill_mode).

Command example

skill_mode
printf(“ total components = %d\n” totalcomp)
cct_mode

See also

skill_cmd
skill_mode
cct_cmd

center

The center command attempts to move single wire segments so that they are
equidistant between adjacent pins of a component.

The center command examines all wires that pass between adjacent pins of a
component and positions these wire segments equidistant between the pins, subject
to the following conditions:

• No new conflicts are introduced.

• Only a single wire segment lies between a pin pair (per layer).

• No new routing segments are required to achieve centering. Only a single segment
move is permitted.

• No additional bends are added to wires.

• If a wiring grid is defined, wires are placed on the grid closest to the center line
between the pins.

32

See also

spread

Command example

center

change

The change command controls fanout escape distance for SMDs on an unselected
layer, which is the maximum wire length from the pin that the autorouter can place a
via, and the minimum shielded segment length.

smd_escape

When you unselect the layers that SMDs are mounted on, the autorouter must still
route to the escape vias. The default maximum escape distance used by the
autorouter is 0.25 inches from the edge of the SMD pad to the center of the via.

Escape wires and vias can be rerouted throughout the autorouting session as part of
the normal rip-up and reroute process. The escape vias are always positioned within
the <smd_escape> radius.

min_shield

This parameter specifies the minimum terminal-to-terminal connection length the
autorouter attempts to enclose in a shield wire when the circuit shield command is
used. The default min_shield value is 0.125 inches. This distance is measured from
terminal-origin to terminal-origin.

33

The change command controls the maximum wire length that is used to escape SMD
pads on an unselected and the minimum segment length that is shielded.

Command examples

unit inch
change smd_escape 500
change min_shield 0.5

change_width_by_rule

The change_width_by_rule command changes the width of wires affected by a width
rule change.

Use this command to automatically update the width of all wires affected by a change
in wire width rules. By default, changes to wire width are made only where violations
are not created. Use the force option to make all width changes based on the new
rules, even if the change creates a violation.

Note

This command does not apply to wires affected by changes in region rules.

See also

highlight

Command examples

rule layer s2 (width 1)
rule layer s3 (width 2)
change_width_by_rule force

check_area

The check_area command examines the design within a rectangular area to
determine both placement and routing design rule violations.

The command marks violations that exist within the specified area. Use the command
to evaluate the effects of rule changes within an area, and to detect design rule errors
created when checking is off, without having to check the entire design. Use the
check command to list all violations in the design.

Command example

check_area 1.1 0.2 2.0 0.5

34

check

The check command examines the design to determine placement and routing rule
violations.

type

Controls which rules are checked. The choices are

route, which means check routing rules. Clearance violations are marked with
rectangles, crossover violations with diamonds, length violations with dashed lines,
and crosstalk violations with thin-lined rectangles.

all, which means check routing rules, placement rules, and all other options
available for type.

place, which means check placement rules. Violations are marked with a thick-
lined rectangle and with small diamonds on each corner of the component outline.

include

Adds check_type options to the list of rules and objects the routing checker checks
in this command execution only.

exclude

Removes check_type options from the list of rules and objects the routing checker
checks in this command execution only.

<check_type>

The check types you can specify with the setup_check and check commands are:

Type Defaults to

conflict on
length on
limit_way off
max_vias off
miter off
order off
pin off
polygon_wire off
protected off
same_net_check off
stagger off
stub off

35

use_layer off
use_via off
xtalk (crosstalk) on

Use the check command to evaluate the effects of rule changes or to find placement
and routing rule violations that occur during interactive operations while rule checking
is turned off. You can use the type option to check:

place - just placement rules, and comp_outline if set in the setup_check
command, or

route - all the routing checker options specified in the setup_check command, or

all - all the options available for type

Use the type keyword to identify the type of checking you want to perform (place,
route, or all).

You can use the include and exclude keywords to add one or more checking options
that are turned off in the current setup, or to remove checking options that are
currently on. The include and exclude keywords do not change the checking setup,
they only apply to the check command with which they are used.

If you use check without the type, include, or exclude keywords, only routing
violations are checked. This is equivalent to check (type route).

SPECCTRA automatically checks for rule violations at the beginning of a session and
after every placement or routing operation. If you add or change a rule during a
session, you can use the check command to evaluate the effects of the new rule.

If you turn off checking, modify the routing using interactive tools, and then turn on
rule checking, SPECCTRA does not immediately check for rule violations. You must
issue the check command to find rule violations that occurred when rule checking
was turned off.

Placement checking works differently. If checking is turned on, you can’t create a
placement violation. If checking is turned off when you move a component, and you
create a placement violation, the violation is marked immediately. Note that
placement violations are displayed graphically only if the Placement Errors layer is
displayed in the Layers panel.

See also

setup_check
place_rule
circuit
rule

Command examples

check

check (type route)

check (type place)

check (type all)

36

check (include miter stub limit_way) (exclude xtalk)

<check_type>

conflict

Checks for shorts and clearance violations.

The default is on.

length

Checks for violations of length rules.

The default is on.

limit_way

Checks for violations of the rule command limit_way rule.

The default is off.

max_vias

Controls whether the maximum via rules for nets, classes, groups, and fromtos are
checked. The default setting for this control is off, which means maximum via rules
are not checked. See the rule command for setting max_vias rules.

miter

Checks for unmitered wire corners.

The default is off.

order

Checks routed wiring for violations of the net ordering rules, and highlights violations
in the work area when you run the check command.

Note

You might not want to turn on both order and stub at the same time because the
violations appear similar when highlighted in the work area.

pin

Checks for clearance violations between pins and other objects.

The default is off.

polygon_wire

Checks for clearance violations between wiring polygons and other objects.

The default is off.

37

protected

Checks for clearance violations between protected wires or vias and other objects.

The default is off.

same_net_check

Checks for clearance rule violations between objects on the same net. A same net
clearance rule violation occurs when a wire segment, via, or pin is too close to
another object on the same net.

The default is off.

Note

The via_via and via_via_same_net clearance rules are always checked and are not
affected by this control. Only clearance rules, which are used to prevent unintended
shorts, are checked.

stagger

Checks for violations of the rule command maximum stagger rule.

The default is off.

stub

Checks for violations of the rule command max_stub length rule, and highlights
violations in the work area when you run the check command.

The default is off.

Note

You might not want to turn on both stub and order at the same time because the
violations appear similar when highlighted in the work area.

use_layer

Checks for violations of the circuit command use_layer rule.

The default is off.

use_via

Checks for violations of the circuit command use_via rule.

The default is off.

xtalk

Checks for violations of crosstalk rules.

The default is on.

38

circuit

The circuit command assigns rules to nets, net classes, fromtos, groups of fromtos,
and group sets.

net

Applies circuit rules to the specified <net_id>. The <net_id> is the name of a net
defined in SPECCTRA or in the design file.

class

Applies circuit rules to the specified <class_id>. The <class_id> is the name of a
class defined in SPECCTRA or in the design file.

group

Applies circuit rules to the specified <group_id>. The <group_id> is the name of a
group defined in SPECCTRA or in the design file.

group_set

Applies circuit rules to the specified <group_set_id>. The <group_set_id> is the name
of a group set defined in SPECCTRA or in the design file.

selected

Applies circuit rules to only the selected nets.

Use the circuit command to assign length, delay, and shielding rules, and routing
priorities, vias, and routing layers. See circuit rules overview for general information
about circuit rules. Some circuit rules do not apply to all objects.

The object keyword you use determines at which level of rule precedence you want
SPECCTRA to apply your routing rules. The choices are net, class, group, and
group_set. For a list of the general types of rules that apply to each rule precedence
level see routing rule hierarchy. You can also use the selected keyword to apply
rules to selected nets. Use <circuit_rules> to set your rules.

The objects you can apply circuit rules to are described below.

Object Description

net A single net name.

39

class One or more nets that share common rules. Use
the define class command to create a unique
class name and assign nets.

group A set of fromtos that share common rules. Use
the define group command to create a unique
group name and assign fromtos.

group_set A set of groups that share common rules. Use
the define group_set command to create a
unique group set name.

selected One or more nets that are marked by using
select net. A complete net must be selected. This
command does not work on selected fromtos.

Note: Use the define command to assign rules to fromtos at the net, group, or group
set levels.

You can control maximum and minimum routed lengths, match the routed lengths of
two or more nets, match the routed lengths of the fromtos in a net, control the total
length of a group of fromtos, match the routed lengths of groups in a group set, and
automatically route shields for nets. You can specify length rules by using:

• Actual dimensions

• Ratio of routed length versus Manhattan length

• Delay values in units of time

If you use delay rules, you must define a time_length_factor by using the rule
command. A warning message appears if you try to set a delay rule without setting a
time_length_factor.

Note

You cannot set length rules using both actual dimensions and time units. If you set a
length rule by using delay, all prior length rules that use actual dimensions are
ignored. If you set a length rule by using actual dimensions, all prior length rules that
use delay are ignored.

Command examples

unit mil
circuit net GND (use_via V100)
define (class c1 sig1 sig2 sig3 (circuit (priority 255)))
circuit class c1 (match_net_length on (ratio_tolerance 20))
circuit selected (use_layer L2 L3)

define (group g1 (fromto U1-3 U3-4)
 (fromto U6-8 U7-5)
 (circuit (length 3000 2400)))
circuit group g1 (match_fromto_length on (tolerance 0.10))
circuit net J1 (length 4.4 3.9 (type ratio))

40

circuit net AR0 (length -1 2.5)
rule net J1 (length_gap 0.008)
rule net AR0 (length_amplitude 0.25)

define (class c2 sig1 sig2 sig3 (circuit (max_delay 525)
 (min_delay 420)))
rule class c2 (time_length_factor .45)

define (group g2 (fromto U4-20 U2-17) (fromto U4-2 U4-8))
define (group g3 (fromto U1-6 U3-12) (fromto U1-16 U3-7))
define (group g4 (fromto U2-9 U3-20) (fromto U2-7 U3-8))
define (group_set grpset1 g2 g3 g4)
circuit (group_set grpset1 (match_group_length on
 (ratio_tolerance 15))
rule group_set grpset1 (time_length_factor 0.8)

define (group g5 (fromto U1-13 U3-10) (fromto U3-15 U4-7))
define (group g6 (fromto U1-9 U3-16) (fromto U3-14 U4-6))
define (group_set grpset2 g5 g6)
circuit group_set grpset2 (match_group_delay on (tolerance 400))
rule group_set grpset2 (time_length_factor .45)

set crosstalk_model cap_ratio
circuit class class1 (switch_window 10 35)
circuit class class2 (sample_window 1 25)

Circuit rules overview

Use the circuit command descriptors to

For length

• control maximum and minimum routed length of a net
• control maximum and minimum total routed length of all nets within a group
• match the routed length of each fromto to the longest fromto in a net or group
• match the routed lengths of all nets in a class
• match the routed length of each group in a group set

For delay

• control maximum and minimum delay for a net
• control the total delay for all nets within a group
• match the delays of each fromto in a net or group
• match the delays of all nets within a class
• match the total delay of each group in a group set

For noise and crosstalk

• control automatic shielding of wires during autorouting for a net, class, group, or
fromto
• set the switch window and sample window for nets or classes of nets to define
their net coupling relationship

For general autorouting

41

• Control routing priority
• Limit routing length on exposed layers
• Limit routing of specified nets and fromtos to certain layers
• Control which vias are used with certain nets, classes, or groups

<delay_descriptor>

The <delay_descriptor> sets a circuit rule that controls the maximum or minimum
delay for a net.

max_delay

The maximum delay allowed. The routed length must be equal to or less than this
value. If you enter a max_delay value that is less than the min_delay value, the
max_delay value is ignored.

min_delay

The minimum delay allowed. The routed length must be equal to or greater than this
value.

<delay_value>

The <delay_value> is a real number with up to three decimal places. For example, if
you enter a value of 130.333333, the value is rounded off to 130.333.

If you specify a delay rule, you must also define how much delay each unit of routed
wire length produces by setting a time_length_factor with the rule command. A delay
rule is not applied unless you first set a time_length_factor.

<length_descriptor>

The <length_descriptor> sets a circuit rule that controls maximum and minimum
routed wire lengths.

length

Controls maximum and minimum routed lengths.

42

<max_length>

The <max_length> value must be specified first, followed by the <min_length> value.
Use a value of -1 to ignore a previously set maximum length value. If you enter a
<max_length> that is less than the <min_length> value, <max_length> is ignored.

<min_length>

The <min_length> value is optional. If you don’t want to control minimum length, omit
the minimum length value. Use a value of -1 to ignore a previously set minimum
length value. If you specify <min_length>, it must be less than the <max_length>
value. If it is greater, <max_length> is ignored.

type

Controls whether the <max_length> and <min_length> values represent actual
length values or a ratio of actual length to Manhattan length. If you don’t specify type,
the default is actual.

The <max_length> and <min_length> values can represent actual routed wire lengths
or ratios of actual length to Manhattan length.

For example,

circuit net RX (length 1.25 1.1 (type ratio))

specifies a maximum routed wire length for net RX no greater than 125% and no less
than 110% of its Manhattan length.

When type ratio is used, the <max_length> and <min_length> values use only two
decimal places of precision. If you use more than two decimal places, the value is
truncated. For example, the value 1.255 truncates to 1.25. The largest Manhattan
length in a class is multiplied by the <max_length> and <min_length> factors to
calculate the minimum and maximum length rules for all nets in the class.

Note

Device-level detailed placement follows length rules set with type actual, not type
ratio.

<match_fromto_delay_descriptor>

The <match_fromto_delay_descriptor> sets a circuit rule that matches the delay of
each fromto in a net or group.

match_fromto_delay

Matches the delay of each fromto in a net or group.

43

tolerance

The delays are matched within the tolerance specified with the command. The default
delay tolerance is equal to a one inch actual dimension.

<delay_value>

The <delay_value> is a real number with up to three decimal places. For example, if
you enter a value of 130.333333, the value is rounded off to 130.333.

If you specify a delay rule, you must define how much delay each unit of length
produces by setting a time_length_factor with the rule command. A delay rule is not
applied unless you first set a time_length_factor.

<match_fromto_length_descriptor>

The <match_fromto_length_descriptor> sets a circuit rule that matches the routed
length of each fromto to the longest fromto in a net, group, or group set.

match_fromto_length

Matches the routed length of each fromto to the longest fromto in a net or group.

tolerance

The routed lengths are matched within the tolerance specified with the command, or
within the default tolerance of one inch.

ratio_tolerance

The routed lengths are matched within the tolerance set as a percentage of the
longest Manhattan length.

By default, the tolerance is set to one inch when match_fromto_length is on and no
tolerance or ratio_tolerance is specified. When ratio_tolerance is specified, it must be
a real number which is a percentage value with up to two decimal places. For
example, if the ratio tolerance value is .20, and the longest fromto Manhattan length
is 1.5 units, the tolerance is .3 units.

<match_group_delay_descriptor>

The <match_group_delay_descriptor> sets a circuit rule that matches the total delay
of each group in a group_set. It applies only to defined group_sets.

44

match_group_delay

Applies only to a set of groups. Matches the total delay of each group in the set.

tolerance

The delays are matched within the tolerance specified with the command. The default
delay tolerance is equal to a one inch actual dimension.

<delay_value>

The <delay_value> is a real number with up to three decimal places. For example, if
you enter a value of 130.333333, the value is rounded off to 130.333.

If you specify a delay rule, you must define how much delay each unit of length
produces by setting a time_length_factor with the rule command. A delay rule is not
applied unless you first set a time_length_factor.

<match_group_length_descriptor>

The <match_group_length_descriptor> sets a circuit rule that matches the total routed
length of each group in a group_set. It applies only to a group_set.

match_group_length

Applies only to a set of groups. Matches the total routed length of each group in the
set.

tolerance

The routed lengths are matched within the tolerance specified with the command, or
within the default tolerance of one inch.

ratio_tolerance

The routed lengths are matched within the tolerance set as a percentage of the
longest Manhattan length.

By default, the tolerance is set to one inch when match_group_length is on and no
tolerance or ratio_tolerance is specified. When ratio_tolerance is specified, it must be

45

a real number which is a percentage value with up to two decimal places. For
example, if the ratio tolerance value is .20, and the longest total Manhattan length in
the group_set is 1.5 units, the tolerance is .3 units.

<match_net_delay_descriptor>

The <match_net_delay_descriptor> sets a circuit rule that matches the delays of all
nets in a class. It applies only to a class of nets.

match_net_delay

Applies only to a class of nets. Matches the delays of all nets in a class.

tolerance

The delays are matched within the tolerance specified with the command. The default
delay tolerance is equal to a one inch actual dimension.

<delay_value>

The <delay_value> is a real number with up to three decimal places. For example, if
you enter a value of 130.333333, the value is rounded off to 130.333.

If you specify a delay rule, you must define how much delay each unit of length
produces by setting a time_length_factor with the rule command. A delay rule is not
applied unless you first set a time_length_factor.

<match_net_length_descriptor>

The <match_net_length_descriptor> sets a circuit rule that matches the routed
lengths of all nets in a class. It Applies only to a class of nets.

match_net_length

Applies only to a class of nets. Matches the routed lengths of all nets in a class.

tolerance

The routed lengths are matched within the tolerance specified with the command, or
within the default tolerance of one inch.

46

ratio_tolerance

The routed lengths are matched within the tolerance set as a percentage of the
longest Manhattan length.

By default, the tolerance is set to one inch when match_net_length is on and no
tolerance or ratio_tolerance is specified. When ratio_tolerance is specified, it must be
a real number which is a percentage value with up to two decimal places. For
example, if the ratio tolerance value is .20, and the longest total Manhattan length in
the group_set is 1.5 units, the tolerance is .3 units.

<max_restricted_layer_length_descriptor>

The <max_restricted_layer_length_descriptor> sets a circuit rule that limits routed
length on restricted layers. This circuit rule applies to nets, classes of nets, fromtos,
groups, and group sets.

max_restricted_layer_length

Sets a maximum routed length (<>) for individual nets and fromtos on restricted
layers.

total

Applies to groups only. This option limits the total routed length of fromtos in a group
on restricted layers.

This rule is provided to limit routing on exposed layers. It works in conjunction with
the <restricted_layer_length_factor_descriptor> which marks a layer as restricted.

For example,

rule layer sig1 sig4 (restricted_layer_length_factor 1)

marks layers sig1 and sig4 as restricted, and then

circuit class all_nets (max_restricted_layer_length 50)

limits each net in the class all_nets to a maximum of 50 mils on layers sig1 and sig4.

Note

At the class and group set levels this rule applies to individual nets and groups,
respectively.

47

<priority_descriptor>

The <priority_descriptor> affects when a net, class, or fromto is scheduled for routing.

The value of <positive_integer> can be any integer value in the range of 1 (lowest
priority) to 255 (highest priority). When priority is not specified, nets have the default
priority value of 10.

<sample_window_descriptor>

The <sample_window_descriptor> sets a circuit rule that defines one or more portions
of a clock cycle during which sampling of the specified signals can occur.

A sample window is defined by a pair of integers that indicate the beginning and
ending points of the window, with respect to the full master clock cycle. The sample
window specifies the portion of the master clock cycle during which a net is
susceptible to switching noise from an adjacent net.

A value of -1 entered immediately after the sample_window keyword removes the
entire sample window definition and leaves it unspecified.

Switch/Sample Window overlap

Once switch and sample windows are defined, noise transmission and reception for
nets are determined based on whether their defined switch and sample window
intervals overlap. For example, if a switch window for net A overlaps with the sample
window of net B, then net B may receive switching noise transmitted from net A
unless the nets are routed in compliance with other noise and crosstalk rules. In other
words, nets will be routed according to noise and crosstalk rules where switch/sample
window overlaps indicate a noise transmission/reception may occur.

<shield_descriptor>

The <shield_descriptor> sets a circuit rule that controls whether shielding is applied to
wires.

shield

Controls whether a connection is automatically shielded during autorouting.

48

type

Specifies one of three shield types:

parallel, which allows parallel shield wires on the same layer for nets with this rule.
tandem, which allows parallel shield wires on layers above and below nets with
this rule.
coax, which combines parallel and tandem to allow shield wires on the same and
adjacent layers for nets with this rule.

The default is parallel.

use_net

The use_net <net_id> syntax specifies the shield net, which must be a net assigned
as a power layer in the design.

Use this descriptor only to control automatic shield creation for a net, class, group, or
fromto. By default, this descriptor allows parallel shields. The tandem keyword allows
shields on layers above and below the shielded wire. The coax keyword allows both
tandem and parallel shields. Shields are routed during automatic and interactive
routing of nets that have this shield rule.

See also

Related tandem shield rules:

<tandem_shield_overhang_descriptor>

<switch_window_descriptor>

The <switch_window_descriptor> sets a circuit rule that defines one or more portions
of a clock cycle during which switching of the specified signals occurs.

A switch window is defined by a pair of integers that indicate the beginning and
ending points of the window, with respect to the full master clock cycle. The switch
window specifies the portion of the master clock cycle during which a net may
transmit switching noise to an adjacent net.

A value of -1 entered immediately after the switch_window keyword removes the
entire switch window definition and leaves it unspecified.

Switch/Sample Window overlap

Once switch and sample windows are defined, noise transmission and reception for
nets are determined based on whether their defined switch and sample window
intervals overlap. For example, if a switch window for net A overlaps with the sample
window of net B, then net B may receive switching noise transmitted from net A
unless the nets are routed in compliance with other noise and crosstalk rules. In other
words, nets will be routed according to noise and crosstalk rules where switch/sample

49

window overlaps indicate a noise transmission/reception may occur.

<total_delay_descriptor>

The <total_delay_descriptor> sets a circuit rule that controls the range for the total
delay of a group. The rule applies only to groups.

max_total_delay

Applies only to groups. The max_total_delay rule sets the range for the total delay of
a group.

min_total_delay

Applies only to groups. The min_total_delay rule sets the range for the total delay of
a group.

<delay_value>

The <delay_value> is a real number with up to three decimal places. For example, if
you enter a value of 130.333333, the value is rounded off to 130.333.

The sum of the delays of the routed fromtos in a group must be equal to or less than
the max_total delay and equal to or greater than the min_total_delay.

If you specify a delay rule, you must define how much delay each unit of length
produces by setting a time_length_factor with the rule command. A delay rule is not
applied unless you first set a time_length_factor.

<total_length_descriptor>

The <total_length_descriptor> sets a circuit rule that controls the maximum and
minimum limits for the total routed length of fromtos in a group. The rule applies only
to groups.

max_total_length

Applies only to groups. The max_total_length rule sets the maximum total length of
a group.

min_total_length

Applies only to groups. The min_total_length rule sets the minimum total length of a

50

group.

The sum of the routed lengths of the fromtos in the group must be equal to or less
than the max_total_length and equal to or greater than the min_total_length.

<use_layer_descriptor>

The <use_layer_descriptor> assigns one or more routing layers to a net, class, group,
group set, or fromto.

Each <layer_name> is the name of a layer on which the net(s) or fromto(s) can be
routed. The use_layer rule overrides an unselected layer.

<use_via_descriptor>

The <use_via_descriptor> sets a circuit rule that is used during autorouting. The
use_via or use_array rule can apply to named nets, classes, groups, or to selected
nets.

use_via

The use_via rule assigns one or more vias (<padstack_id>) or a via_array
(<via_array_template_id>) to a net, class, group, group set, fromto, or to selected
nets. When you assign more than one via, the autorouter chooses the padstack with
the smallest shape that satisfies the layer requirements.

You can substitute a <via_array_template_id> for a <padstack_id>, if you want to use
a via array but do not want to specify the number of rows and columns of the array.

use_array

The use_array option generates a via array (<via_array_template_id>) from
information in the via array template. You must specify the via array size with the row
and column parameters. The use_array option overrides the default via even when
the wire intersection area is only large enough for a single via.

51

For more information about via arrays, see the <via_array_template_descriptor> in
the Design Language Reference.

Note

Via array features are only available with the MicroVia option, which requires the
RouteMVIA license.

<row>

Number of rows in the via array.

<column>

Number of columns in the via array.

The use_array rule identifies the template you want to use for via arrays. The
minimum number of vias used to interconnect wires when you specify use_array is
the number defined in the template. The maximum number of vias applied when you
specify use_array is based on the number that fit in the area where interconnecting
wires overlap. Wider wires can use more vias to improve connectivity

clean

The clean command initiates rip-up and reroute passes that improve
manufacturability by removing vias and bend points and by changing SMD entries
and exits.

Clean passes improve PCB manufacturability. The clean command rips-up and
reroutes all connections with higher costs for parameters that include via use, off-
center SMD pad entry, and SMD pad side-exit. The use of clean results in better
quality routes. Four clean passes are suggested after completing all routing passes. If
you use the command without a pass value, the autorouter performs one clean pass.

The routing progress indicator monitors and displays the progress of the clean
command using a traffic light icon. You can click on the icon to display detailed
information in a dialog box.

Note

The clean command should not be executed after a miter command.

Command examples

clean
clean 4

52

component_pin_property

The component_pin_property command assigns properties to component pins.

<property_name>

A keyword that identifies a standard property or a user property. Each property you
assign must consist of a keyword (<property_name>) and a value
(<property_value>). The value might be another keyword, a number, or a character
string depending on what the property requires.

This command lets you assign both standard properties and user properties to one or
more pins on a component. You can specify the component name (<component_id>)
and each pin name (<pin_id>), or you can use the selected option to apply the
property to all selected pins.

A property consists of the keyword (<property_name>) that identifies the property,
and a value (<property_value>). Property values can be numbers, keywords, or
character strings depending on the property.

The standard properties for component pins include

force_to_terminal_point <property_value>
exit_direction <property_value>

Properties can be assigned in SPECCTRA or in the design file, but a property
assigned to a pin in the design file cannot be changed or removed in SPECCTRA.
Component pin properties apply only to individual pins on specific component
instances of an image. A property assigned to a component pin takes precedence
over a property assigned to the image pin.

You can use the report command to generate a property report that contains the
current values of properties assigned to all component pins in the design.

Command examples

component_pin_property C81 2 (uprop_1 0.02)

component_pin_property I6301 3 5 9 (uprop_2 xyz)

component_property

The component_property command assigns physical, electrical, and user properties
to components.

53

This command lets you assign both standard properties and user properties to one or
more components. The standard component properties consist of several physical
properties and an electrical value. Physical properties consist of type, height, and
power dissipation.

In general, a property consists of the keyword (<property_name>) that identifies the
property, and a value (<property_value>). Property values can be numbers,
keywords, or character strings depending on the property. See component properties
for a list of properties you can assign to components.

You can either select the components before using this command or specify the
reference designator (<component_id>) for each component. If you do not specify
component reference designators, SPECCTRA assigns the properties to all selected
components.

Properties can be assigned in SPECCTRA or in the design file. Component
properties apply only to specific component instances of an image. A property
assigned to a component takes precedence over a property assigned to the
component’s image. Use the image_property command to assign properties to
images.

The standard component properties consist of physical and electrical properties.

• The physical properties let you control a component’s type, maximum height, and
maximum power dissipation.

• The electrical property is a label you can assign that identifies some electrical
characteristic of a component.

You can use the report command to generate a property report that contains the
current values of properties assigned to all components in the design. You can also
generate a total power dissipation report for the PCB.

Note

If you assign or remove physical or electrical properties on components, SPECCTRA
records these changes when you use the write command to save a placement file or
a session file. User properties assigned to or removed from components, and
physical, family, and user properties assigned to images (using image_property) or
removed from images, are not recorded in these files.

See also

autodiscrete
autorotate
define room
initplace
interchange
place_rule

54

room_rule
select component
unplace

Command examples

The following examples assign properties to the named components.

component_property C81 (type capacitor) (height 0.0280)

component_property U28 U40 (height 0.1800)

component_property R1 R2 R5 (power_dissipation 500)

component_property U1 U2 (value 10k)

The following examples assign properties to all selected components.

component_property (type capacitor) (value 0.5pf) (power_dissipation 0.5)

component_property (height 0.05)

<physical_property_descriptor>

Use <physical_property_descriptor> to assign type, height, and power dissipation
properties to components or images.

type

Controls which small components are included for processing in the current automatic
placement operation. A small component is a component with three pins or less that
has not been assigned the large type property. The choices are

capacitor, which includes only small capacitors (small components assigned the
capacitor type property, and small components with all pins connected to power
nets and not assigned the resistor or discrete type property).

discrete, which includes only small discretes (small components assigned the
discrete type property).

resistor, which includes only small resistors (small components assigned the
resistor type property).

small, which includes all small components.

The default is small.

55

height

Assigns maximum and minimum component height constraints for a room. A value of
-1 for <max_height> or <min_height> means that height constraint is undefined. The
defaults are both -1.

power_dissipation

Assigns a maximum power dissipation value for total dissipation of all components in
the room. A value of -1 means the power dissipation constraint is undefined. The
default is -1.

The physical properties you can assign to a component or image consist of one or
two types (type), maximum height (height), and maximum power dissipation
(power_dissipation). You can assign or change any or all of these properties in the
same command.

• Use type when you want to classify components for placement rules or for
exclusive processing in automatic placement operations.

• Use height when you plan to constrain the minimum or maximum height of
components permitted in a room.

• Use power_dissipation when you plan to constrain the maximum total power
dissipation permitted in a room.

SPECCTRA recognizes the following component and image types:

• Large
• Small
• Capacitor
• Resistor
• Discrete

By default, a large component or image has more than three pins, and a small
component has three pins or less. The large and small types are mutually exclusive.
Assigning one of them removes the other. You can assign the large type to a
component or image with three pins or less, but you cannot assign the small type to a
component or image with more than three pins.

You can assign the capacitor, resistor, or discrete type to any small or large
component or image. These types are mutually exclusive. Assigning one of them to a
component or image removes either of the others.

A capacitor in SPECCTRA is defined as a decoupling (bypass) capacitor. If a
component with three or fewer pins, all connected to power nets, has not been
assigned the large, resistor, or discrete type, SPECCTRA automatically treats the
component as a capacitor.

SPECCTRA distinguishes between large and small components for processing in
automatic placement operations. You can also specify small capacitors, resistors, or
discretes for exclusive processing. Large capacitors, resistors, or discretes must be
processed with other large components.

You can assign separate image set placement rules for each type on the PCB or
within a room. Capacitor, resistor, or discrete type rules take precedence over large
or small type rules. See place_rule for details.

56

See also general information about component and image types.

Note

See the define room and room_rule commands for details about setting placement
constraints for rooms.

If you assigned jumper heights to jumpers in the design file and you want to route
jumpers beneath components, you must assign to each component (or its image) a
height property with a value that is greater than any jumper height assigned to
jumpers in the design file.

<electrical_value_descriptor>

Use <electrical_value_descriptor> to assign an electrical value to individual
components.

The electrical value property is a label that identifies an electrical part or characteristic
but has no functional significance in SPECCTRA.

<user_property_name>

A keyword that identifies a user property. Each property you assign must consist of a
keyword (<property_name>) and a value (<property_value>). The value might be
another keyword, a number, or a character string depending on what the property
requires.

A user property is treated as a label in SPECCTRA, but can have functional meaning
to the host layout system or a third party tool.

cost

The cost command sets routing costs and overrides the autorouter internal cost
table.

Note

The tax command is preferred over cost if you need to apply routing costs.

57

way

The cost to route in the wrong direction. For example, the cost of horizontal wire
segments routed on a vertical layer.

cross

The cost of a crossing conflict.

via

The cost to use a via.

off_grid

The cost to route off grid. The autorouter routes off grid unless you use the command
cost off_grid forbidden. If you use gridless routing, this cost does not apply.

off_center

The cost to enter or exit a pin off center.

side_exit

The cost to exit pins on the long side.

squeeze

The cost to create a wire-to-via clearance violation.

<cost_descriptor>

You can set values for cost options with the <cost_descriptor>. The
<cost_descriptor> can be a keyword or a numeric value. The cost descriptors and
their corresponding numeric values are listed in the following table.

Cost Description Numeric Value

forbidden 100

58

high 50

medium 25

low 8

free 0

layer

The cost to use a named layer (<layer_name>) for routing, controlled by type, which
is either length or way.

type

Controls how the cost applies on the named layer

length - the cost of any routing on the layer

way - the cost of wrong-way routing on the layer

You can override internally defined costs and set them to fixed values with this
command, although this is not generally recommended. If you don’ t use the cost
command, the autorouter automatically adjusts costs throughout the autorouting
session, using default costs.

When you execute a cost command, the cost value you specify remains constant
until you change it or pass control back to the autorouter by resetting the value to -1.
If you want to return a cost parameter to its default (system-assigned) value, execute
the cost command with a value of -1. For example:

cost way -1

You can set values for cost options with the <cost_descriptor>. The
<cost_descriptor> can be a keyword or a numeric value. The cost descriptors and
their corresponding numeric values are listed in the following table.

Cost
Description

Numeric
Value

forbidden 100

high 50

medium 25

low 8

free 0

When you set a cost to forbidden, the autorouter is not prohibited from overriding
that cost except for vias. If you execute cost via forbidden, the autorouter is
prohibited from using vias. A more efficient way of prohibiting vias is to unselect all
vias.

59

The cost off_grid forbidden command is ignored when the center of an SMD pad is
off-grid. The autorouter must go off-grid to route an off-grid pad.

Command examples

cost way forbidden
cost via low
cost layer L1 forbidden
cost layer L2 high (type way)

critic

The critic command helps improve manufacturability without performing a rip-up and
reroute operation.

The critic command inspects the routing to eliminate notches and removes extra
bends. The critic command is similar to the clean command but different in one
important respect. Where clean completely reroutes each wire and can drastically
change a connection’s wiring, the critic command attempts to make local
adjustments to the existing wires without rip-up and rerouting. The critic operation
executes much faster than clean.

The following figure shows notch and bend point removal and stairstep removal.

See also

clean

Command example

critic

Define Commands

Define commands create classes, groups, group sets, differential pairs, bundles, and
regions. These commands can also be used to define net ordering, class-to-class
relationships, and layer noise weight factors.

Define commands also allow you to use rule and circuit descriptors to assign rules to
nets, classes, groups, group sets and fromtos., and differential net pairs. You can
create a table of layer noise weight factors to represent your design’s layer-to-layer

60

noise coupling characteristics. Refer to the Design Language Reference manual for
additional information on layer_noise_weight.

You can use the fromto descriptor to define net ordering, assign layer rules, and
apply rule and circuit commands. See the <fromto_descriptor> for more detailed
information.

The individual define commands are explained in the following topics. Syntax
diagrams and command examples are included.

define bundle
define class
define class_class
define group
define group_set
define layer_noise_weight
define net
define padstack
define pair
define region

Note

For information about defining keepout areas, see the define keepout command.

define bundle

The define bundle command assigns nets to named bundles for later routing with
similar path topologies.

bundle

Creates or edits a net bundle that includes information about intended spacing and
layers for later routing with the same path topology.

gap

Specifies the intended spacing between wires routed as a bundle. The gap can apply
to one or more layers, and multiple gaps can be specified.

61

layer

Identifies one or more layers on which the specified gap applies.

nets

Identifies nets by <net_id> or uses selected nets.

add_net

Adds one or more nets to an existing net bundle. You can use this option without the
gap option.

remove_net

Removes one or more nets from an existing net bundle. You can use this option
without the gap option.

Note: It is possible to remove all nets from a net bundle, leaving an empty net bundle
to which nets may be added using the add_net option.

Use this command to prepare two or more nets for routing with the same path
topology. A net may only belong to one bundle at a time. After a bundle has been
defined, nets can be removed and added to the bundle using the remove_net and
add_net options.

The order of the <net_id>s or selected nets in this command has no effect on the
routing order of the bundled nets. Routing order depends on the physical layout of the
pins of the bundled nets.

Command examples

define (bundle addr_bundle (gap 10 (layer m1 m2)) (nets addr1 addr2 addr3))

define (bundle addr_bundle (add_net addr4))

define (bundle addr_bundle (remove_net addr1))

define class

The define class command assigns a name to a group of nets. Optionally, it also can
assign rules to the class it defines.

62

class

A group of nets that are referenced by a single name.

rule

Assigns one or more rules in the current command. Click <rule_descriptor> to see
which rules apply for this command.

circuit

Assigns one or more circuit rules in the current command. Click <circuit_descriptor>
to see which rules apply for this command.

You can use the <rule_descriptor> and <circuit_descriptor> to apply clearance,
wiring, timing, crosstalk, and noise rules to classes.

When you use the define class command, consider the following guidelines and
restrictions:

• Class names must be unique.

• You can assign a net to more than one class, but if the classes have conflicting
rules, the rule of the last defined class is used.

Class definition

A defined class is available for assignment of a variety of rules that will apply to all the
nets in the class, according to the rules hierarchy. You assign rules to an existing
class with the circuit and rule commands. To save a step, you can assign rules
when you define the class, using the rule descriptor and circuit descriptor within the
define class command.

Adding nets to a class

The add_net and add_selected_nets options add nets to an existing class. Nets
already in the class remain and existing rules apply to the added nets.

Removing nets from a class

The remove_net and remove_selected_nets options remove one or more nets from

63

an existing class without disbanding the class. Nets not specified when using this
option remain in the class, and all rules currently assigned to the class remain in
effect.

Note

You can redefine the rules of an existing class by omitting the net name list, and
specifying the new rules for the class.

See also

circuit and rule commands for complete <circuit_descriptor> and <rule_descriptor>
diagrams and descriptions.

forget command to disband a class

Command examples

The following example creates a class named “c2” consisting of three nets.

define (class c2 sig2 sig3 sig4)

The next example creates a class named “c3” and assigns a circuit rule to it.

define (class c3 sig5 sig6 (circuit (use_via v25)))

This example creates a class named “c4” and assigns two rules to it: a width rule and
a clearance rule.

define (class c4 sig7 sig8 (rule (width 0.010) (clearance 0.008)))

<nets_descriptor>

The <nets_descriptor> names the nets in the class.

composite

Identifies a list of net names that match the <begin_index>, <end_index>, <step>,
and optional <prefix> and <suffix> parameters.

<prefix> One or more non-numeric characters that match the initial
characters of one or more nets. The <prefix> parameter cannot
include wildcard characters.

64

<begin_index> A positive integer that matches the integer portion of a net name.
The <begin_index> parameter determines the initial integer to
match in a range.

<end_index> A positive integer that matches the integer portion of a net name.
The <end_index> parameter determines the last integer to match
in a range.

<step> A positive integer that determines which integer values to match in
net names between the <begin_index> and
<end_index>parameters.

<suffix> One or more non-numeric characters that match the ending
characters of one or more net names. The <suffix> parameter
cannot include wildcard characters.

selected

Includes selected nets in the specified class.

add_net

Adds one or more specified nets to the named class.

add_selected_nets

Adds currently selected nets to the named class.

remove_net

Deletes one or more specified nets from the named class without disbanding the
class.

remove_selected_nets

Deletes currently selected nets from the named class without disbanding the class.

<layer_rule_descriptor>

The <layer_rule_descriptor> assigns a layer rule to the defined class.

layer_rule

A routing rule that applies to all wires routed on the named layers, unless a higher-
precedence rule overrides.

rule

Assigns one or more rules in the current command. Click <rule_descriptor> to see
which rules apply for this command.

65

<topology_descriptor>

The <topology_descriptor> defines the preferred ordering of pin connections for each
net in the class.

topology

Defines the preferred topology, which is the exact ordering of pin connections for
each member net of the class.

<fromto_descriptor>

Defines each single pin-to-pin connection for member nets of a class. See the
<fromto_descriptor> for a complete diagram and description.

Fromtos cannot be identified with a <pin_reference> in a class.

comp_order

Orders the pin-to-pin connections of a net by using the component reference
designator <component_id> only.

define class_class

The define class_class command assigns a name to a group of two or more classes
for the purpose of assigning inter-class rules to the classes.

class_class

Defines a group of classes that can be referenced by a single name.

classes

The name of a class of nets that’s defined in the design file or by using the define
class command.

At least two class ids must be supplied. All classes are paired with each other when
multiple classes are listed. To define rules between specific classes, you specify
separate class_class commands, listing only the two classes to be paired. You can
repeat a class id to apply rules between the wires of that class only.

66

directional

The directional keyword determines which class is noise transmitter or noise
receiver. Direction is used only for parallel noise descriptors and tandem noise
descriptors. The rule applies to the pair in the order the classes are specified. Do not
use directional when applying crosstalk rules between the wires of a single class.

layer_rule

A routing rule that applies to all wires routed on the named layers, unless a higher-
precedence rule overrides.

You can apply clearance, crosstalk, and noise rules to classes for class_class.

See also

rule command for complete <rule_descriptor> diagrams and descriptions.

Command examples

define (class_class C2 C3 (rule (parallel_segment (gap 0.005) (limit 0.050))))

define group

The define group command assigns a name to a group of fromtos. Optionally, it can
also assign one or more circuit and routing rules to the group it defines.

group

A group of fromtos that are referenced by a single name <group_id>.

67

<fromto_descriptor>

Defines one or more pin-to-pin connections as members of a group. See the
<fromto_descriptor> for a complete diagram and description.

You can use the net name to differentiate virtual pins in groups, since virtual pin
names are not unique.

selected

Includes currently selected fromtos in the group.

layer_rule

A routing rule that applies to all wires routed on the named layers, unless a higher-
precedence rule overrides.

rule

Assigns one or more rules in the current command. Click <rule_descriptor> to see
which rules apply for this command.

circuit

Assigns one or more circuit rules in the current command. Click <circuit_descriptor>
to see which rules apply for this command.

add_fromto

Adds one or more fromtos, using the fromto descriptor, to the named group.

add_selected_fromtos

Adds currently selected fromtos to the named group.

remove_fromto

Deletes one or more specified fromtos, using the fromto descriptor, from the named
group without disbanding the group.

remove_selected_fromtos

Deletes currently selected fromtos from the named group without disbanding the
group.

You can apply clearance, wiring, timing, shielding, crosstalk, and noise rules to
groups.

Group definition

A defined group is available for assignment of a variety of rules that will apply to all
the fromtos in the group, according to the rules hierarchy. You assign rules to an
existing group with the circuit and rule commands. To save a step, you can assign
rules when you define the group, using the rule descriptor and circuit descriptor within
the define group command.

68

Adding fromtos to a group

The add_fromto and add_selected_fromtos options add fromtos to an existing group.
Fromtos already in the group remain and existing rules apply to the added fromtos.

Removing fromtos from a group

The remove_fromto and remove_selected_fromtos options remove one or more
fromtos from an existing group without disbanding the group. Fromtos not specified
when using this option remain in the group, and all rules currently assigned to the
group remain in effect.

Note

You can assign a fromto to more than one group, but if the groups have conflicting
rules, the rule of the last defined group is used.

You can redefine the rules of an existing group by omitting the fromto list, and
specifying the new rules for the group.

See also

circuit and rule commands for complete <circuit_descriptor> and <rule_descriptor>
diagrams and descriptions

forget command to disband groups

Command examples

define (group g1
 (fromto U1-20 U2-33)
 (fromto U3-12 U4-16)
 (fromto U5-1 U6-4)
 (circuit (use_via v12)))

define (group g1
 (add_fromto (fromto U1-21 U2-34))

define group_set

The define group_set command assigns a name to a number of specified groups.
Optionally, it can also assign routing and circuit rules that apply to all fromtos in the
groups that make up the group set.

69

group_set

A set of groups that are referenced by a single name <group_set_id>.

composite

Identifies a list of group names that match the <begin_index>, <end_index>, <step>,
and optional <prefix> and <suffix> parameters.

<prefix> One or more non-numeric characters that match the initial
characters of one or more groups. The <prefix> parameter cannot
include wildcard characters.

<begin_index> A positive integer that matches the integer portion of a group
name. The <begin_index> parameter determines the initial integer
to match in a range.

<end_index> A positive integer that matches the integer portion of a group
name. The <end_index> parameter determines the last integer to
match in a range.

<step> A positive integer that determines which integer values to match in
group names between the <begin_index> and
<end_index>parameters.

<suffix> One or more non-numeric characters that match the ending
characters of one or more group names. The <suffix> parameter
cannot include wildcard characters.

70

layer_rule

A routing rule that applies to all group_sets on the named layers, unless a higher-
precedence rule overrides.

add_group

Adds one or more existing groups to the named group set.

add_selected_groups

Adds currently selected groups to the named group set.

remove_group

Deletes one or more specified groups from the named group set without disbanding
the group set.

remove_selected_groups

Deletes currently selected groups from the named group set without disbanding the
group set.

You can apply clearance, width, and timing rules to group sets.

Group set definition

A defined group set is available for assignment of a variety of rules that will apply to
all the fromtos in all the groups of the set, according to the rules hierarchy. You
assign rules to an existing group set with the circuit and rule commands. To save a
step, you can assign rules when you define the group set, using the rule descriptor
and circuit descriptor within the define group_set command.

Adding groups to a group set

The add_group and add_selected_groups options add already-defined groups to an
existing group set. Groups already in the group set remain and existing rules extend
to all the fromtos in the added groups.

Removing groups from a group set

The remove_group and remove_selected_groups options remove one or more
groups from an existing group set without disbanding the group set. Groups not
specified when using this option remain in the group set, and all rules currently
assigned to the group set remain in effect.

Note

You can assign a group to more than one group set, but if the group sets have
conflicting rules, the rule of the last defined group set is used.

See also

circuit and rule commands for complete <circuit_descriptor> and <rule_descriptor>

71

diagrams and descriptions.

forget command to disband group sets

Command examples

define (group g5 (fromto U1-13 U3-10)
 (fromto U3-15 U4-7))
define (group g6 (fromto U1-9 U3-16)
 (fromto U3-14 U4-6))
define (group_set grpset1 g5 g6 (rule (limit_vias 5)))

define (group g7 (fromto U1-12 U3-9)
 (fromto U3-14 U4-6))
define (group_set grpset1 (add_group g7))

define keepout

The define keepout command defines a keepout area.

keepout

Defines a general keepout area and assigns it a unique name (<keepout_id>). A
general keepout is an area of the PCB where all routing and placement objects
(wires, vias, components, and pins) are prohibited.

place_keepout

A placement keepout is an area of the PCB where components and pins are
prohibited. Each keepout area must have a unique name (<keepout_id>).

wire_keepout

A wire keepout is an area of the PCB where wires are prohibited. Each keepout area
must have a unique name (<keepout_id>).

bend_keepout

A wire bend keepout is an area of the PCB where wire bends are prohibited. Each
keepout area must have a unique name (<keepout_id>).

72

via_keepout

A via keepout is an area of the PCB where vias are prohibited. Each keepout area
must have a unique name (<keepout_id>).

elongate_keepout

An elongate keepout is an area of the PCB where wire elongations are prohibited.
Each keepout area must have a unique name (<keepout_id>).

This command lets you define new keepout areas. A keepout area is an area of the
PCB where you prohibit routing or placement. The type of keepout area you specify
determines which objects are prohibited.

When you define a keepout area, you specify a keepout type (keepout, placement
keepout, wire keepout, via keepout, wire bend keepout, or wire elongation keepout)
and describe the shape of the area (rectangle, circle, or polygon) and its location on
the PCB. SPECCTRA treats all keepout area shapes as enclosed areas. Prohibited
objects are not allowed to touch or cross a keepout area outline.

You can also assign a keepout name (<keepout_id>). If you do not assign a name,
SPECCTRA assigns one for you. Default keepout names are assigned sequentially
beginning with the name keepout1.

You can also define keepout areas by drawing them in Draw Keepout mode (see the
mode command for details). Use define keepout when you want to provide precise X
and Y coordinates for each corner of a keepout.

You cannot assign rules to keepout areas you define in SPECCTRA, or change rules
assigned to keepout areas in the design file.

Notes

Use the forget command when you want to disband a keepout area. You can use the
view or vset command to display or hide keepouts in the SPECCTRA work area.

You can change the shape of a keepout area created with the define keepout
command or that defined in the structure section of the design file using Add/Edit
Polygon mode. You cannot change the shape of a keepout area defined as part of a
component image in the library section of the design file.

To change the location of a keepout area created with the define keepout command
or defined in the structure section of the design file, you must disband the keepout
area and redefine it. Use the forget command to disband the keepout area. Then use
define keepout to redefine it in a new location. You cannot change disband a
keepout area defined as part of a component image in the library section of the
design file.

Command examples

This example defines a rectangular keepout.

define (keepout (rect signal 1.550 4.890 7.630 9.750))

This example defines a polygon-shaped placement keepout.

73

define (place_keepout plc_keep1 (polygon s1 0.1 1.500 4.750 -2.375 4.750 -2.375
3.000 0.250 3.000 0.250 2.000 -2.375 2.000 -2.375 0.500 1.500 0.500 1.500
4.750))

<rectangle_descriptor>

The <rectangle_descriptor> defines a rectangular area for a keepout area.

rect

Defines a rectangular area either on a single signal layer or on all signal layers. A
<layer_id> is the name of a signal layer defined in the design file.

• For a keepout area, you can use either <layer_id> to identify a specific signal layer
or signal to identify all signal layers in the PCB.

• For a room, you can use either <layer_id> to identify the front or back side, or
signal to identify both sides, of the PCB.

• For the placement boundary, you must use signal to identify all signal layers in the
PCB.

<vertex>

The X and Y coordinates for a point location on the PCB. Depending on how it is
used in a command, a vertex can identify an absolute location, a relative location with
respect to the PCB origin, a relative location with respect to an object’s origin, or a
corner of a shape you are describing.

Separate the X and Y coordinates with blank spaces. For example, to specify two
vertexes with the coordinates (0, 2) and (3,1), enter 0 2 3 1.

Use rect to define a rectangular area on a specific signal layer or on all signal layers
in the PCB. You must specify the X and Y coordinates (<vertex>) for each of two
diagonally opposed corners of the rectangle.

<circle_descriptor>

The <circle_descriptor> defines a circular area for a keepout area.

circle

Defines a circular area either on a single signal layer (<layer_id>) or on all signal
layers in the PCB (signal). A <layer_id> is the name of a signal layer defined in the

74

design file.

<diameter>

Defines the diameter of a circular area.

Use circle to define a circular area on a specific signal layer or on all signal layers in
the PCB. You must specify diameter of the circle (<diameter>) in the appropriate units
for your design. You can also specify the X and Y coordinates (<vertex>) for the
center of the circle. The default center is the PCB origin defined in the design file.

<polygon_descriptor>

The <polygon_descriptor> defines a polygon-shaped area for a keepout area.

Use polygon to define a polygon-shaped area on a specific signal layer or on all
signal layers in the PCB. You must specify the line thickness (<aperture_width>) for
the area outline and the X and Y coordinates (<vertex>) for each corner of the
polygon.

polygon

Defines a polygon-shaped area on a single signal layer or on all signal layers. The
<layer_id> is the name of a signal layer defined in the design file.

• For a keepout area, you can use either <layer_id> to identify a specific signal layer
or signal to identify all signal layers in the PCB.

• For a room, you can use either <layer_id> to identify the front or back side, or
signal to identify both sides of the PCB.

<aperture_width>

Defines the line thickness for a shape outline such as an area or boundary.

define layer_noise_weight

The define layer_noise_weight command creates a table of noise weighting factors
that are used by the autorouter when computing parallel noise and tandem noise.

75

layer_noise_weight

Builds a table of noise weighting factors assigned to specified layer pairs.

layer_pair

Two signal layer names, or a single layer name repeated, that identify the layer(s)
<layer_id> for the layer noise weight value assignment.

<layer_weight>

The layer noise weight value to be applied when computing parallel noise or tandem
noise between the two layers.

A table entry consists of a pair of layer names and a noise weight factor. You can
create a table of entries by entering more than one layer pair - noise weight
combination.

Parallel noise and tandem noise

In a parallel noise weight entry, the layer pair repeats one layer name. For example,
parallel noise for layer sig1 would be

layer_pair sig1 sig1

In a tandem noise weight entry, the layer pair consists of different layer names. For
example, tandem noise between layers sig1 and sig2 would be

layer_pair sig1 sig2

Command examples

define (layer_noise_weight (layer_pair s1 s1 1.00)
 (layer_pair s2 s2 0.900)
 (layer_pair s5 s5 0.880)
 (layer_pair s5 s6 0.900))
 (layer_pair s1 s2 0.920)

define net

The define net command applies one or more optional attributes or properties to an
entire net, or to specified fromtos in a net. Optionally, it can also apply clearance,
timing, shielding, crosstalk, or noise rules to a net or fromtos using the
<circuit_descriptor> and <rule_descriptor>.

76

net

Specifies a set of pins with the same signal or voltage name to which this command
applies one or more optional attributes or properties.

<fromto_descriptor>

Defines a pin-to-pin connection in a net. See the <fromto_descriptor> for a complete
diagram and description.

comp_order

Orders the pin-to-pin connections of a net by using the component reference
designator <component_id> only.

order

The pin-to-pin organization of the net. The order in which each <pin_reference> is
entered in the list determines the pin-to-pin hookup for the net.

expose

An attribute that forces a pin escape to a via on an external layer. You can identify the

77

pins with <pin_reference> or <component_id>. The expose attribute applies to
through-pins only.

noexpose

An attribute that removes the expose attribute for the specified pins so that fanout
does not generate vias for those pins.

source

A property assigned to pins for daisy-chain routing. You can identify the pins with
<pin_reference> or <component_id>.

load

A property assigned to pins for daisy-chain routing. You can identify the pins with
<pin_reference> or <component_id>.

terminator

A property assigned to pins for daisy-chain routing. You can identify the pins with
<pin_reference> or <component_id>.

layer_rule

A routing rule that applies to all group_sets on the named layers, unless a higher-
precedence rule overrides.

add_pins

Assigns one or more pins of an added component or an existing component to the
specified net.

The define net command can be used in a do file to assign net rules (such as pin
ordering) that are not supported in the host layout system. Although you can use
rules in the autorouter that are not available in the layout system, you can’t add new
circuit elements to a design. For example, you can’t add a new net to the design. It is
possible, however, to add existing component pins to an existing net with the
add_pins option.

Note

When you use define net, you cannot specify fromtos that form a loop. SPECCTRA
issues an error message and stops on the fromto that causes the loop.

See also

circuit and rule commands for complete <circuit_descriptor> and <rule_descriptor>
diagrams and descriptions.

Command examples

define (net sig1 (order U1-1 U2-2 U4-4))

78

define (net sig20 (fromto U10-2 U6-4)
 (fromto U6-4 U20-3
 (rule (width 0.030))) (fromto U20-3 U20-4
 (circuit (use_layer TOP))))
define (net sig1 (order U1-1 U2-2)
 (comp_order U2 U3))

define (net sig2 (expose U7))

define padstack

The define padstack command specifies an under pad via location for an SMD pad.

padstack

Specifies an SMD pad stack <padstack_id> and one or more under pad via locations
for the padstack. <padstack_id> must refer to a padstack defined in the design file.

via_site

Specifies a location <vertex> relative to the padstack origin where an under pad via
can be inserted.

attach

Enables use of (on) or removes (off) the specified via site(s) for under pad vias.

use_via

Specifies one or more vias for use at the specified via sites.

The under pad via location is specified relative to the SMD pad origin. The location
may be under the pad, or offset sufficiently to site the via outside the pad outline.

Note

This command must be used in conjunction with the via_at_smd rule. Vias will not be
located under pads, or at specified under pad via sites, unless the via_at_smd rule is
on.

Command examples

define (padstack smd_2 (via_site .07) (attach on))
define (padstack smd_2 (off)
define (padstack smd_2 (via_site .07) (attach on (use_via via_a)))
define (padstack smd_2 (via_site .07) (attach off))

79

define pair

The define pair command defines one or more pairs of nets or wires to be routed as
a differential pair with the same topology.

pair

Defines one or more pairs of nets or wires to be routed as a differential pair with the
same topology.

nets

Specifies a pair of net names (<net_id> <net_id>) to make up a differential pair.

selected

Applies the pair definition to two, and only two, selected nets.

gap

The edge-to-edge distance between paired wire segments.

<gap_width>

The target wire-to-wire spacing between differential pair wires. The autorouter
uses a greater wire-wire spacing only when obstructed by an object in the routing
path.

-1

Resets gap for the differential pair to unspecified.

layer

Applies the specified gap option to only the layer specified in <layer_id>.

wires

Defines a pair as two fromtos you specify using fromto descriptor syntax.

80

<fromto_descriptor>

Specifies one of two pin-to-pin connections that make up a differential pair. See the
<fromto_descriptor> for a complete syntax diagram and description.

When gap is specified for a pair, the autorouter attempts to maintain the gap along
the pair’s entire length. If you define a pair and set a gap, you can subsequently reset
the gap to the default clearance rule by using -1 as the gap value.

Note

By default, the length considered when applying timing rules (length and delay) to
pairs is the average length for the pair (calculated by adding the individual lengths of
the two wires in the pair, and dividing by two). If you want the nets to be checked
independently, use set average_pair_lengths off (see the set command for details).

See also

forget pair command to disband differential pairs.

Command examples

define (pair (nets sig16 sig17 (gap 0.005)))
define (pair (nets A?+ A?- (gap 0.008))

define region

The define region command creates a rectangular or polygon shaped area within
which different width and clearance rules apply.

region

Defines a rectilinear region and assigns one or more rules to it. The optional
<region_id> assigns a name to the region.

81

rect

Specifies the rectangular area with two pairs of coordinates <vertex> and assigns the
region either to a specific layer <layer_id> or to all signal layers (signal).

polygon

Specifies the polygon-shaped area with three or more pairs of coordinates <vertex>
and an aperture width of 0, and assigns the region either to a specific layer
<layer_id> or to all signal layers (signal).

region_net

Assigns clearance or width rules to the specified net (<net_id>) within the region. If
the region overlaps other regions, region_net rules take precedence over
region_class rules and global region rules.

region_class

Assigns clearance or width rules to the specified class (<class_id>) within the region.
If the region overlaps other regions, region_class rules take precedence over global
region rules.

region_class_class

Assigns clearance rules between the specified classes (<class_id>) within the region.
If the region overlaps other regions, region_class_class rules take precedence over
region_net rules, region_class rules, and global region rules.

Use this command to define routing areas where you want different clearances or
wire widths to apply than on the rest of the PCB. You can assign rules for the entire
region, for a single class or net within the region, or between two classes within the
region.

When you define a region, you choose shape (rectangle or polygon), specify its layer
and location, and assign the clearance rules, width rules, or both that you want to
apply within the region. You can also assign an optional region name.

Region name

The optional <region_id> assigns a name to the region. If you omit this option,
SPECCTRA automatically assigns a default name. A region name must be unique
and can consist of any combination of text characters or symbols, except blank
space, parentheses, or semicolon.

You can use the region name in later commands to reference the region. You cannot
delete or change the name of an existing region.

Region shape

Use either rect to define a rectangular region or polygon to define a polygon shaped
region. You can define the region for a single layer (<layer_id >) or for all signal
layers (signal). Use <vertex> to specify the X and Y coordinates for the diagonally
opposed corners of a rectangular region or each corner of a polygon shaped region.

82

Note: The autorouter recognizes only rectilinear regions. If you define a polygon-
shaped region, the autorouter encloses any diagonal side of the region with a
rectilinear corner.

Rules and overlapping regions

You define a region when you want different clearance or with rules to apply in the
region area than elsewhere on the PCB. The type of region you define depends on
precedence level of the rules you assign to the region.

You can assign global region rules to all nets within the region, or you can’

• Use region_net to assign clearance and width rules to only the specified net
(<net_id>).

• Use region_class to assign clearance and width rules to only the specified
class (<class_id>).

• Use region_class_class to assign clearance rules between only the two
specified classes (class <class_id> <class_id>).

Region rules have the highest precedence in the rule hierarchy. Therefore, within a
region, the region clearance and width rules override all other clearance and with
rules. See also routing rule hierarchy .

If you define regions that overlap, region_class_class rules take precedence over all
other region rules, followed by region_net rules, region_class rules, and global region
rules. If two regions of the same precedence level overlap, the rules for the
overlapping regions are merged, or if the rules conflict, the rules of the last defined
region are used.

Notes

You can also define regions by drawing them in Draw Region mode (see the mode
command for details). Use define region when you want to provide precise X and Y
coordinates for the room outline.

You can use the rule command to assign or change rules in existing regions.

Use the forget command if you want to disband a region.

See also

rule command for complete <rule_descriptor> diagrams and descriptions.

Command examples

define (region region1
 (rect s1 0.975 1 1.75 .6)
 (rule (width 0.015)))

define (region rgn2
 (polygon signal 0
 1.500 4.750 2.375 4.750 2.375 3.000
 0.250 3.000 0.250 4.000
 1.500 4.000 1.500 4.750)
 (region_class class1)

83

 (rule (clearance 1.5)))

<fromto_descriptor>

The <fromto_descriptor> specifies one or more individual pin-to-pin connections.

<virtual_pin_descriptor>

References a virtual pin, which is a tjunction or via. See the <virtual_pin_descriptor>
for a complete diagram and description.

net

A set of pins with the same signal or voltage name. The autorouter must connect
these pins with wires. Voltage can be assigned to a "power" layer. Each net is defined
in the network section of the design file. Every pin of a net is identified by a
component reference designator and a physical pin name.

layer_rule

A routing rule that applies to all wires routed on the named layers, unless a higher-
precedence rule overrides.

Use the <fromto_descriptor> to specify an individual pin-to-pin connection in a net.
You can specify a fromto as a pair of pin names, component names, or virtual pins.
You can use the net name <net_id> to differentiate virtual pins in groups, since virtual
pin names are not unique.

See also

circuit and rule commands for complete <circuit_descriptor> and <rule_descriptor>
diagrams and descriptions.

<virtual_pin_descriptor>

The <virtual_pin_descriptor> references a virtual pin, which is a tjunction or via.

84

virtual_pin

References a virtual pin, which is a tjunction or via.

<virtual_pin_name>

Any virtual pin name defined in the design file, or assigned in SPECCTRA. A given
virtual pin name can be used in more than one net.

position

The location of a virtual pin.

radius

The distance a virtual pin can be moved from the vertex to avoid a violation. The
default <positive_dimension> value is 0.5 inch.

defkey

The defkey command displays existing key programming and assigns SPECCTRA
commands to keys.

<keyname>

Any alpha-numeric key, including function keys.

Use this option to name the key you want to program or re-program. Depending on
the window manager in use, some keys may not be programmable on your system.
Generally, the defkey command issues a warning in such cases.

shift

Adds the shift key to <keyname> to define a key combination that executes
<command>.

ctrl

Adds the control key to <keyname> to define a key combination that executes
<command>.

85

<command>

A SPECCTRA command, typed exactly as if used in a do file or on the command line.

The defkey command programs an unused key to execute a SPECCTRA command.

Some keys are predefined in SPECCTRA. You can see a list of keys that have been
predefined and keys that you have defined, and the commands they perform, by
entering defkey without an option.

You can program function keys and standard alphanumeric keys. In general, to
execute a defined command, you move the pointer into the work area and press the
key(s).

However, programmed alphanumeric keys only execute the assigned command
when the keyboard focus is set to the work area . When the focus is set to the
command entry area, programmed alphanumeric keys enter a standard keyboard
character. You can toggle the keyboard focus by pressing the [Tab] key or by using
the set_focus command.

Some function keys you cannot program because they are reserved by the computer
hardware, operating system, or window manager you are using.

Function keys that cannot be programmed on UNIX systems are listed for some
platforms in the following table.

Key Not User
Definable

Platform Configuration

F1, F4, F10, Shift-
Undo

Sun SPARCstation Solaris with
OpenWindows

F1, F4, F7, F9. F10,
F11, F12

HP 9000 Series 700 HP-UX with VUE

F1, F4, F10 IBM RISC
System/6000

AIX

Function keys that cannot be programmed on Windows 95 or Windows NT systems
are reserved for the uses described in the following table.

Key Used For

F1 Opens help

Shift-F1 Sets point & click help mode

Ctrl+F4 Closes document window

Ctrl+F6 Moves to next document window

F10, Shift+F10,
Ctrl+F10

Activates menu without using mouse

You can save your defined keys in a keys file for use in a later session by using the

86

write keys command or the write environment command.

Note

In SPECCTRA, the [F1] key is predefined to access the SPECCTRA online help.
However, in Solaris 5.4 and 5.5 under Open Windows, [F!] is set as the Open Look
help key.

If you want to use [F1] to access SPECCTRA help or redefine it to perform some
other function, you must first remove or comment the following line in the .xinitrc file
in your home directory:

Change

xmodmap -e ‘keysym F1 = Help’

to

xmodmap -e ‘keysym F1 = Help’

Log out and log back in to apply your edits and redefine the [F1] key.

Command examples

defkey
defkey (f3 ctrl) x
defkey (f5 shift) (undo)

delete

The delete command removes objects from the current autorouting environment.

all wires

All routed wires except protected or fixed wires. You are prompted to confirm if the

87

command is executed interactively.

all poly_wires

All wiring polygons that are not protected. You are prompted to confirm if the
command is executed interactively.

all regions

All regions and associated rules, which include shapes defined as regions in the
design file structure section, rules associated with component images, and regions
defined with the define command. You are prompted to confirm that you want to
delete regions. After you delete all regions, you can use the define region command
to create new regions.

If a deleted region had a wire width rule associated with it, the wire width of existing
wires will not change until additional route or clean passes are executed. The check
command is executed automatically after delete all regions to update the conflicts
based upon the new rule set.

selected

All routed wires that are selected. For example, if you issue select component U1,
and then delete selected, all routed wires from comp1 to the first terminal point are
deleted.

selected poly_wires

All selected poly_wires that are not protected.

conflicts

All routed wires that intersect other routed wires or violate clearance rules are
deleted. Starting with the wires that cause the most intersections and clearance
violations, the autorouter removes each wire and re-evaluates the violation list.

-segment

The -segment option allows the autorouter to eliminate conflicts by removing single
segments and creating a guide from one segment to another. The delete conflicts
command is not recommended when there are a large number of conflicts. Instead,
use the filter command to remove conflicts.

include fast

Deletes wires that include violations of high-speed rules, such as length or delay
rules.

net

All routed wires for nets identified by <net_id>.

region

Areas identified by <region_id> and all associated rules.

88

If a deleted region had a wire width rule associated with it, the width of existing wires
does not change until additional route or clean passes are executed.

wirebond

All discrete wires and wirebond pad sites.

fence

All fences.

incomplete_wires

Incomplete wiring in this sense includes:

pin-to-pin connections with a segment missing. Here, “missing” might or might not
include guide wires connecting the other segments.

segments that tee into a pin-to-pin connection but end without completing the
connection or end at a guide wire.

segments that start at a pin and end without completing the connection (but
segments that end at vias are presumed to be fanouts or test points and are not
deleted).

wires left dangling by the execution of a delete conflicts -segment command.

incomplete_wires net

Incomplete wires that are present on the named net are removed. Use this option to
remove dangling wire segments on a net. If a net contains incomplete connections as
well as other connections that are complete, only the incomplete wire segments are
removed.

testpoints

Deletes all testpoints in a design by removing the testpoint attribute from vias and
pins. Also removes wiring and vias added with the testpoint rule.

You can modify wiring by removing all wires, wires involved in conflicts, wires in
named nets, all incomplete wires, or incomplete wires in named nets. These delete
options are useful for experimenting with different routing strategies and rules early in
an autorouting session.

You can also remove all regions, named regions, fences, or wirebonds with the delete
command.

A delete operation is listed in the routing history table of the status report because it
can change conflict and unroute information.

Command examples

delete all wires
delete incomplete_wires (net SYNC1)
delete incomplete_wires

89

delete poly_wires
delete selected
delete selected poly_wires
delete fence
delete net GND
delete conflicts
delete all regions
delete region region1
delete testpoints

did_file

The did_file command controls whether SPECCTRA automatically records
commands in a did file.

off

Stops the did file generation, if one is active, and closes the current (active or
inactive) file. Subsequent commands are not recorded.

on

Opens a new did file with your specified <filename> and closes the current (active or
inactive) did file if one is in use. If you do not specify a filename, SPECCTRA
generates a new file with a time-stamped filename.

suspend

Suspends the did file generation, if one is active, and changes its status to inactive.
Subsequent commands are not recorded until you use either the resume option , to
resume recording in the currently inactive file, or the on option, to close the inactive
file and open another file.

resume

Resumes the did file generation in the currently inactive file that you suspended using
the suspend option. Subsequent commands are appended in the file.

By default, SPECCTRA automatically begins recording commands in a did file when
you start a session unless you use the -nodid command line switch. You can use
did_file to turn off or turn on did file recording, or to specify a different filename, any
time during the session. You can also suspend did file recording, and later resume
recording in the same did file.

90

Only one did file can be open at a given time. The status of the current did file is
either active or inactive. When you are recording commands, this file is called the
active did file. If you suspend recording, the file becomes inactive but remains open. If
you later resume recording, the file becomes active again.

• Use off to stop recording commands and close the active or inactive did file.

• Use on to open a new did file and begin recording commands in the file. If you
specify the name (<filename>) of an existing file, SPECCTRA overwrites the file. If
another did file is currently active or inactive, SPECCTRA closes that file.

• Use suspend to temporarily stop recording commands in the active did file. The file
remains open but becomes inactive. If you later use off, or use on and specify a
different filename, SPECCTRA closes the inactive file.

• Use resume to continue recording commands in the inactive did file where you
previously stopped recording commands using suspend.

You can use a text editor to edit a did file to create a do file for use in another
SPECCTRA session.

The did_file command opens, closes, and suspends or resumes command recording
in a session did file. This command does not affect the rules did file created with Edit
- Rules Did File or File - Write - Rules Did File. However, you can open a session
did file in the rules did file editor and edit the file or record additional commands.

The filename extension that usually identifies a did file is .did, but you can use any
filename or extension.

You can choose whether to save or delete the current active or inactive did file when
you use the quit command to end the session.

For general information about specifying filenames, see File Naming Conventions.

See the SPECCTRA User Guide for details about using command line switches to
start SPECCTRA.

Command examples

did_file off
did_file on myfile.did
did_file suspend
did_file resume

direction

The direction command controls layer routing directions.

91

The direction command sets a preferred routing direction for the specified layer.

Command options are

horizontal sets the preferred routing direction to horizontal and sets a low cost for
horizontal routing.

vertical sets the preferred routing direction to vertical and sets a low cost for
vertical routing.

orthogonal sets no preference but sets equally low costs for the vertical and
horizontal routing directions.

positive_diagonal sets the preferred routing direction to positive diagonal, which
is from bottom left to top right and from top right to bottom left, and sets a low cost
for positive diagonal routing.

negative_diagonal sets the preferred routing direction to negative diagonal, which
is from bottom right to top left and from top left to bottom right, and sets a low cost
for negative diagonal routing.

diagonal sets no preference but sets equally low costs for the orthogonal and
diagonal routing directions.

off unselects the layer making it unavailable for routing.

The layer routing directions you specify with this command override routing directions
set in the design file. If layer routing directions are not set in the design file, the
default direction for a layer depends on its position in the structure section.
SPECCTRA alternates horizontal and vertical direction assignments. For example, for
four signal layers, the default directions are

layer 1, horizontal
layer 2, vertical
layer 3, horizontal
layer 4, vertical

Notes

Diagonal routing is controlled by the set diagonal_mode command and is enabled by
default. You should not use set diagonal_mode off while a layer direction is set to
diagonal, positive_diagonal, or negative_diagonal.

You can also prevent routing on a layer by using the unselect layer command.

92

Command examples

direction L1 vertical
direction S3 orthogonal
direction S5 positive_diagonal

do

The do command reads and executes a do file.

The autorouter reads commands from the specified file. This command file is called a
do file. A do file can include any autorouter command.

The do command can be executed as follows:

• Keyboard entry, where you enter the do command directly in SPECCTRA from the
keyboard.

• Menu bar, where you click Execute Do File in the File menu.

• Nested do file, where the autorouter sequentially executes commands in each do
file as they are encountered. You can nest up to 20 levels of do files. For example:

Command Sequence Command Location

do file1 command line entry

 grid via 10 do file1 line 1

 do file2 do file1 line 2

 bus diagonal do file2 line 1

 fanout
 (pin_type signal)

do file2 line 2

 grid via 5 do file1 line 3

 route 10 do file1 line 4

 write wire mywires do file1 line 5

When you start the autorouter, you can use the -do switch as a fourth method to
execute a do file. If a do file is initiated with the -do switch when you start the
autorouter, do <filename> is the first command executed after the design file is
loaded.

If a nested do file is not found in a do file, an alert message displays, but the
autorouter continues with the next command in the do file that is running.

Note

You can use the dofile_auto_repaint option in the set command to control whether

93

SPECCTRA repaints the work area after operations performed by the commands in a
do file.

See file naming conventions for details about specifying filenames and directory
paths.

Command example

do myrules.do

evaluate

The evaluate command performs an immediate evaluation of an expression and
writes the results (value and type) to the parent shell.

The expression can be a simple variable or a complex computation. The evaluation
can be a string, a real number, or an integer.

See the setexpr command for related information.

The internal autorouter variables are defined under <system_variable> in the Design
Language Reference.

Command examples

The following example converts a measurement in centimeters (6.334) to inches by
dividing by 2.54.

evaluate (6.334/2.54)

The next example uses a system variable (conflict_wire) to display the current
number of conflicts.

evaluate (conflict_wire)

fanout

The fanout command routes short escape wires and vias from SMD pads and
through-pins.

94

<passes>

A positive integer that, when used, must immediately follow the fanout keyword to
specify the number of rip-up and reroute fanout passes. Conflicts are allowed in the
escape wires until the last fanout pass. Five fanout passes are suggested. The
default pass value is 1 if not specified.

direction

Directs the autorouter to escape wires and vias inward from the component pins (in),
outward from the component pins (out), or either way (in_out). The default in_out

95

option allows the autorouter to escape wires and vias in both directions.

The direction you specify also affects how through-pins are escaped when assigned
the expose property. When the in_out option is set for fanout (default), exposed
pins escape outside the component outline. See the assign_pin command.

location

Directs fanout to escape wires and vias inside the component outline, outside the
component outline, or anywhere relative to the component outline.

This option may be used along with the direction option to locate vias relative to both
the component pins and the component outline. This may be most useful when the
component outline extends far beyond the pins.

pin_share

Allows you to control whether the autorouter can escape to through-pins on the same
net. The default condition is pin_share off, which forces the autorouter to use only
vias for escapes. When pin_share is on, the autorouter escapes to a through-pin on
the same net if the cost is lower than the cost to use a via and the pin is within the
max_len distance.

smd_share

Allows you to control whether the autorouter can connect SMD pins on the same net
before escaping to a shared pin or via. The default condition is smd_share off, which
forces the autorouter to escape SMD pins directly to a pin or via. When smd_share is
on, the autorouter can directly connect SMD pins on the same net if the cost is lower
than the cost to use a via and the pin is within the max_len distance.

via_share

Allows the autorouter during the fanout operation to share vias between SMD pads
on the same net. The default condition, via_share off, forces the autorouter to use
unique vias for every surface mount pad.

<maximum_connections>

Sets a limit on the number of connections to a pin or via when using the pin_share or
via_share option. By default, there is no limit when maximum_connections is not
specified.

share_len

Sets the maximum distance that a via or pin can be from a through-pin or via if
pin_share or via_share is on. Vias and pins farther away from these pins will not
share a fanout via.

If you use the default (-1), pin sharing can occur with any pin or via within the default
distance of 200 mils.

via_grid

Sets a temporary via grid, which is used only during the fanout command. If no

96

fanout via grid is specified, the default is the PCB via grid. This temporary via grid
should be a multiple of the PCB via grid.

direction

Specifies an X or Y grid. If direction is not set, the grid is a uniform X and Y grid.

offset

Specifies an offset (<positive_dimension>) for the X and Y grids.

smart_via_grid

Allows the autorouter to automatically calculate initial via grids that permit one wire or
two wires between adjacent vias. If one_wire_between is selected, the temporary via
grid allows one wire to be routed between adjacent vias. If two_wire_between is
selected, the temporary via grid allows two wires to be routed between adjacent vias.
After fanout is completed, the via grid is reset to the original PCB via grid.

If the via_grid option is also used, that value is the minimum via grid that is used
when computing the smart grid value.

The preferred option sets the autorouter to use internal costing to select via sites
rather than change the via grid temporarily. This allows fanout to violate the
one_wire_between or two_wire_between specification instead of failing when a
suitable via site is not found.

depth

Controls the number of layers a blind or buried via uses during fanout and the
direction of the routing. You can set depth to the following options:

opposite sets fanout to the opposite side of the design. Pads on the front side
fanout toward the back side and pads on the back side fanout toward the front
side. Embedded pins, which are pins only on internal layers, fanout to the opposite
side from the side to which they are closest.

up sets fanout toward the front side.

down sets fanout toward the back side.

A value of 0 sets no depth limitation.

max_len

Restricts the routed length of the escape wires. The length is measured from a pad’s
origin to the center of the via.

pin_type

Specifies which types of pins are escaped.

active

All signal pins that interconnect with one or more other pins, and all power pins.

This is the default if no other pin_type option is used.

97

signal

All pins that have signal nets assigned and interconnect with one or more other pins.

power

All pins that have power nets assigned.

unused

All pins, including SMD pads and through-pins, that have no net assigned. Unused
pins are collected into a single net called *UNUSED_PINS*.

exclude_through_pin

Excludes unused through-pins from pin escape.

all

All pins on the component including active and unused.

single

All single pin signal nets.

Escape vias are chosen by the autorouter from the available via set and are placed
according to the current PCB via grid. Use the via_grid option to set a temporary via
grid just for the fanout command. Use the via_grid direction option to set the grid in
only the x or y direction. Use the offset option to offset the first grid point from the 0,0
origin coordinates.

To control fanout direction, use both the location option and the direction option.
Using these options together enables fanout to locate vias relative to both the
component pins and the physical component outline. For example where the
component outline extends beyond the component pins, and where manufacturing or
test requirements demand that fanout vias be accessible, the combination of
direction out and location outside would ensure that fanout vias were directed
outward from pins and beyond the physical component outline.

You can select the components you want to escape and designate which pins, and
control whether the escape direction is inside or outside the components.

The routing progress indicator monitors and displays the progress of the fanout
command using a traffic light icon. You can click on the icon to display detailed
information in a dialog box.

If you use the fanout command without options, it is equivalent to

fanout 1 (direction in_out)
 (location anywhere)
 (pin_share off)
 (smd_share off)
 (via_share off)
 (pin_type active)

98

When no components, pins, or nets are selected, all active SMD component pins are
escaped. For example, the fanout command escapes all SMD pins that are active
(have signal or power nets assigned to them). The fanout direction can be both inside
and outside of each component’s footprint.

Note: “Active” does not include single-pin nets.

You can select the components, nets, pins, and fromtos to escape.

When you... Then...

Select components Only the components selected are
escaped per the fanout options used.

Select nets Only SMD pads included in the
selected nets are escaped.

Select components
and nets

SMD pads that belong to the selected
nets and the selected components
are escaped.

Select pins Only selected SMD pads are
escaped. Unselected pins on the
same net are not escaped.

Select fromto Only SMD pads included in the
selected fromto are escaped.

You can use separate fanout commands to escape different pin types differently, and
you can specify the pin type more than once in a single fanout command to handle
special situations. For example:

fanout (direction in) (pin_type power)
fanout (direction out) (pin_type signal) (pin_type unused)

The result of these two commands is that power is routed inside component footprints
and signal and unused pins are routed outside component footprints.

The max_len rule restricts the routed length of the escape wires. The max_len is
measured from a pad’s origin to the center of the via. Make sure that the max_len
you specify allows sufficient space so that the wire and via can obey the
smd_via_same_net clearance rule.

Rules set by using the rule command also affect fanout and are described in the
following table.

99

Rule Description

smd_to_turn_gap Sets the minimum distance to the first bend
point in a wire from an SMD pad.

smd_via_same_net Sets the minimum distance from an SMD pad
to the first via in the wire.

power_fanout Controls the routing order between power
pins, vias, and bypass capacitors.

Before you use fanout, consider the following:

• The fanout operation can assist the autorouter on PCBs with four or more signal
layers, but is usually not used with two-layer PCBs.

• You can specify a via grid that is used during fanout, and reset to the original
PCB via grid after fanout is completed.

• You can specify a smart via grid that allows one wire between vias or two wires
between vias. This grid is used during fanout, and reset to the original PCB via
grid after fanout is completed. An additional option to smart_via_grid, preferred,
sets the autorouter to use internal costing rather than change the via grid. This
allows a fanout attempt to violate the one_wire_between or two_wire_between
specification rather than fail if a suitable via site cannot be found.

• Rather than protect fanout escape patterns to ensure that all SMD pins have a
via for testing, assign test points to signal nets with the testpoint command after
routing is complete. The autorouter tries to move existing vias onto the test grid, if
you define one, before creating new test point via sites.

• Use the bus diagonal command before fanout. The bus command executes
quickly, and its results can be reviewed before executing further commands.

• If you don’t want to fanout all pins of a component, use the select pins or select
area pin command to select individual pins. Only selected pins are escaped when
you execute fanout.

• If you enter fanout (pin_type all), all pins are escaped, including pins without
nets attached.

• Single-pin nets are not escaped unless fanout (pin_type all) or fanout
(pin_type single) is used.

Note

With the MicroVia option, fanout behavior changes to provide enhanced support for
stacked vias under SMD pads. Click here for a description of this feature.

See also

highlight
protect
smart_route

100

Command examples

fanout
select component U254
fanout (pin_type all)
fanout (depth opposite 2) (share_len .5)
fanout 5 (pin_type signal) (via_share on (maximum_connections 2))

fanout (smart_via_grid two_wire_between)
fanout (smart_via_grid one_wire_between preferred)
grid via .100 V25
fanout (via_grid .025)

fanout (pin_type unused (exclude_through_pins))

fanout (direction out) (location outside)

An example that shows results of the fanout (pin_type all) command is shown
below.

Microvia fanout under SMD pads

Blind and buried fanout vias can be created under SMD pads using the fanout
command. When the MicroVia option is on, the fanout command works in a way that
attempts to allow fanout vias under SMD pads even when the pads are directly
opposite each other on either side of the board.

To accomplish this, the fanout command may first move one via off-center from its
SMD pad, but still within the pad, to avoid a conflict with a fanout via from the
opposite side of the board. This allows each via to achieve its full layer span while
remaining under the pad. If this approach fails, then the fanout command may adjust
the layer span of one fanout via to avoid a conflict with a fanout via under a pad on
the opposite side of the board. Which vias layer span gets adjusted depends on
which side of the board is given priority in the fanout command depth option.

fence

The fence command is used to create one or more route keepin areas or to separate
analog and digital signals.

101

You can define rectangular fence areas to route only the connections that fall
completely within that area (hard fence), or to allow analog and digital signals to be
routed in separate areas (soft fence). The vertexes are the X, Y coordinates for the
opposite corners of the fence area. You can define multiple fences. If fences overlap,
the actual keepin area is the union of all the overlapped fences. To remove all fences,
use the delete fence command.

Choose Menu Commands in the Help menu for information about using the mouse to
draw rectilinear polygonal fences.

Note

You can’ t have both hard and soft fences in a design. All fences in a design must be
either hard or soft.

See also set soft_fence for an explanation of hard and soft fences.

Command examples

fence 0.6 1.35 1.0 0.85
fence 1.05 1.38 1.73 0.8

filter

The filter command removes final routing conflicts by executing route passes that
increase the conflict cost and minimize the number of unconnected wires.

If a few conflicts remain after a large number of route and clean passes are
completed, you can use filter passes to ensure conflict-free routing with maximum
completion. When you initiate the filter operation with more than one pass, each pass
progressively increases the cost of routing conflicts. During the last filter pass,
conflicts are prohibited and any remaining conflicts become unroutes or unconnects.
The maximum number of filter passes is five.

If you issue filter without a pass number, SPECCTRA executes a single pass.

Command examples

filter
filter 5

fix/unfix

The fix command prevents routing and rerouting of nets.

102

Note: See Notes and Command examples for additional syntax not shown in this
diagram.

selected

Only the nets that are selected are fixed. The entire net is fixed, including any partially
routed connections.

net

All terminals and routed wiring for the specified nets.

class

All nets in the specified classes.

This command ensures that selected or specified nets are not altered by any
subsequent autorouter operations. Neither the wired nor unwired portions of a fixed
net can be modified by the autorouter until an unfix command is used to change the
net’s status. Wires of fixed nets are treated as keepouts and cannot be involved in
conflicts.

The unfix command restores the normal status of nets that have been fixed with the
fix command in SPECCTRA. It does not affect wires marked as (type fix) or (type
route) in the design file. Wires from the wires file or design file of (type fix) or (type
route) can only be changed by editing the design file. Many translators use the
absence of (type fix) and (type route) to know which nets to merge back in the CAD
system.

Notes

The fix and unfix commands operate only on nets or fromtos. See the
protect/unprotect command to control the rerouting of wires.

The fix and unfix commands also operate on groups of fromtos. See the command
examples for syntax that is not shown in the diagram.

Command examples

fix selected
unfix selected

fix selected group
unfix selected group

fix group group1
fix group group2 group3

103

unfix group group1 group2 group3

fix net clk
unfix net clk

fix class critical
unfix class critical

forget

The forget command removes or disbands collections of objects, area objects, and
object properties.

class

Disbands the named classes and removes all class and class_class rules from the
nets in those classes.

net

Removes all rules assigned to the named nets and forgets any fromto ordering
defined for those nets in SPECCTRA.

order_only

Removes only the fromto ordering of a net, leaving all other assigned rules intact.

Deletes fromtos and virtual pins created by the define net command.

104

group

Disbands one or more named groups of fromtos. All group rules (including ordering)
that are assigned to the fromtos are no longer in effect.

group_set

Disbands one or more named group sets and removes all assigned clearance, width,
and timing rules.

pair

Disbands the pair association between one or more net pairs.

<fromto_descriptor>

Defines a pin-to-pin connection. See the <fromto_descriptor> for a complete diagram
and description.

keepout

Disbands one or more keepouts. You can disband individual keepouts or all the
keepouts within an area you specify by using <area_descriptor>. A <keepout_id> is
the name assigned to an individual keepout you want to disband.

<area_descriptor>

Describes the location or area where you want to disband keepouts. See the
<area_descriptor> for a complete diagram and description.

<property_object_descriptor>

Specifies a design object for assignment or removal of properties. See the
<property_object_descriptor> for a complete description.

property

Identifies a property (<property_name>) you want to remove.

Each standard or user property consists of a keyword (<property_name>) and a value
(<property_value>). You specify the keyword of the property you want to remove,

Note

You can remove properties assigned in SPECCTRA but not properties assigned in
the design file.

bundle

Removes bundle definitions (<bundle_id>) created with the define bundle
command).

The forget command can disband classes, groups, group sets, pairs, bundles, and
keepout areas, and can remove rules assigned to nets. It can also disband net fromto
ordering that you defined in SPECCTRA, and remove properties assigned to design

105

objects.

SPECCTRA discards any rules assigned to disbanded classes, groups, group sets,
or pairs.

• Use forget class to disband one or more classes of nets. All class and
class_class rules associated with the named classes are also disbanded. After you
disband a class, that <class_id> can be reused to define a new class.

• Use forget net to remove all rules assigned to a net and to forget any fromto
ordering that you defined in SPECCTRA. If you want to remove only the fromto
ordering of a net without removing rules assigned to it, use the order_only option
with forget net.

If you use the order_only option with forget net, any rules associated with
fromtos in the net are removed. However, rules associated with the entire net are
not removed.

Note: forget net deletes fromtos and virtual pins created by the define net
command.

• Use forget group to disband one or more groups of fromtos. All group rules
(including ordering) that are assigned to the fromtos are no longer in effect. A
disbanded <group_id> can be reused to define a new group comprising a different
combination of fromtos with different rules.

• Use the forget group_set command to disband a group set and remove all
clearance, width, and timing rules assigned. A disbanded <group_set_id> can be
reused to define a new group set comprising a different combination of groups with
different rules.

• Use forget pair to disband the pair association between two nets. You can use
either net to disband pairs of nets or wire to disband pairs of fromtos. When you use
forget pair net, you can include wildcards in each <net_id> to specify multiple pairs.

If you use forget pair, and the paired nets or paired fromtos have routed wires, the
pair structure is lost during subsequent route or clean operations.

• Use forget keepout to disband one or more keepout areas. You can disband
individual keepouts or all the keepouts located within an area you specify.

• To disband individual keepouts, specify the name (<keepout_id>) of each
keepout you want to disband.

• To disband the keepout at a particular location, or all the keepouts within a
rectangular area, use <area_descriptor> to describe the location or area.

 A disbanded <keepout_id> can be reused to define a new keepout in a different
area of the PCB. You can use the report command to generate a keepouts report
and learn the names of all currently defined keepouts in the PCB.

• Use forget <property_object_descriptor> to remove properties from design
objects.

• Each <property_object_descriptor> identifies an object type (component,
component pin, image, image pin, layer, or net) and the names of the objects
where you want to remove properties.

106

• Each property keyword identifies a property (<property_name>) you want to
remove.

Note: If you remove type properties from components or images, SPECCTRA
uses pin counts to identify them as large or small by default.

You can use the report command to generate a property report of all current
standard and user-defined properties. Properties are also listed in the component,
image, net, and layer reports. Pin properties are listed in the component and
image reports.

• Use forget bundle to disband the bundle association between the nets of a
bundle. If the bundled nets have routed wires, the bundle structure is lost during
subsequent route or clean operations.

Note

You can use the report command to generate a report about net ordering and rules.
You can also generate reports of all currently defined classes, groups, group sets,
pairs, bundles, keepouts, or properties. Disbanded classes, groups, group sets, or
keepouts are not included in their respective reports. They also are not available in
the dialog box lists when you define rules and add or remove class, group, or group
set members.

See also

define bundle
define class
define group
define group_set
define keepout
define pair

mode

component_property
component_pin_property
image_property
image_pin_property
layer_property
net_property

Command examples

forget class thin
forget group g1
forget pair (nets sig16 sig17)
forget group_set grpset1
forget pair (nets A?+ A?-)
forget pair (nets *)
forget keepout keepout_1 keepout_2

forget keepout
 (area 1.550 4.890 7.630 9.750
 (layer signal))

107

forget component_property U1
 (property my_prop_1)

forget component_property
 U2 U3 (property type height)
 U4 U5 (property height)

forget image_pin_property ic1 p3 p5
 (property prop_2 prop_3)

forget image_pin_property
 ic2 p5 p6 (property prop_x)
 p4 p5 (property prop_y)

Note

To identify component or image pins, specify the component name (<component_id>)
or image name (<image_id>) followed by one or more pin names (<pin_id>).

<area_descriptor>

The <area_descriptor> describes the location or area where you want to disband
keepouts.

layer

Identifies either a single layer (<layer_id>) or all signal layers in the design (signal).
The <layer_id> is the name of a signal layer defined in the design file.

type

Disbands only the types of keepouts you choose within the defined area. The choices
are

place, which means disband placement keepouts

wire, which means disband wire keepouts

via, which means disband via keepouts

bend, which means disband wire bend keepouts

108

elongate, which means disband wire elongation keepouts

all, which means disband general keepouts that prohibit all routing and placement
objects

The default type is all.

You can disband a keepout at a particular location or the keepouts within a
rectangular area.

• To disband the keepout at a particular location, specify its X and Y coordinates
(<vertex>) on the PCB.

• To disband keepouts within a rectangular area, specify the X and Y coordinates
(<vertex>) for each of two diagonally opposed corners of the rectangle.

By default, SPECCTRA disband all keepouts within the area you describe. You can

• Use the layer option and specify a layer name (<layer_id>) to disband keepouts
only on a single layer.

• Use the type option to disband only keepouts of a particular type: keepouts
(which prohibit all routing and placement objects), placement keepouts, wire
keepouts, via keepouts, wire bend keepouts, or wire elongation keepouts, or
general keepouts).

<property_object_descriptor>

Identifies an object type and one or more instances of the object. The choices are

component_property <component_id>

component_pin_property
[selected | <component_id> <pin_id>]

image_property <image_id>

image_pin_property <image_id> <pin_id>

layer_property <layer_id>

net_property <net_id>

component_pin_property

Specifies one or more pins of the specified component. A (<component_id>) is a
component reference designator defined in SPECCTRA or in the design file. A
(<pin_id>) is the name of a pin on the component. Pin names are assigned to the
component’s image in the design file or image library file.

See the component_pin_property command for information about assigning
properties to component_pins.

component_property

Specifies one or more component_ids. A (<component_id>) is a component
reference designator defined in SPECCTRA or in the design file.

109

See the component_property command for information about assigning properties to
a component .

image_pin_property

Specifies one or more pins of the specified image. An (<image_id>) is the name of an
image defined in the design file or in a library file listed in the library section of the
design file. A (<pin_id>) is a pin name assigned to the image.

See the image_pin_property command for information about assigning properties to
an image pin .

image_property

Specifies one or more image_ids. An (<image_id>) is an image name defined in the
design file or in a library file listed in the library section of the design file.

See the image_property command for information about assigning properties to an
image.

layer_property

Specifies one or more layers. A (<layer_id>) is the name of a signal layer defined in
the design file.

See the layer_property command for more information about assigning layer
properties.

net_property

Specifies one or more nets. A (<net_id>) is the name of a signal or power net defined
in the design file.

See the net_property command for more information about assigning net properties.

grid route_major_factor

The grid route_major_factor command defines a major grid for each wire grid.

When you use grid route_major_factor, you specify a value (<positive_integer>) to
set the major grid for each wire grid. The value specifies the number of minor grid
points between major grid points for each wire grid.

For example, if you specify 5 for the major grid and the wire grid is set to .02, the
major grid displays every .10 (measurement units).

If you redefine the major grid, SPECCTRA recalculates the major grid points for each
wire grid.

Notes

You can use Define - Color Palette to change the color of the major grid.

The major grid is a display grid that does not affect routing.

110

See also

grid wire
view grid

Command examples

grid route_major_factor 5

grid smart

The grid smart command sets minimum via and wire grids, and calculates an initial
via grid, which is used until the autorouter completes three route passes or the
completion rate is 50%. The via grid is then reduced to the minimum value for all
remaining routing passes.

wire

Specifies a minimum wire grid.

via

Specifies a minimum via grid.

direction

Specifies an X or Y grid. If direction is not set, the grid is a uniform X and Y grid.

offset

Specifies an offset (<positive_dimension>) for the X and Y grids.

You can use the grid smart command instead of grid wire and grid via commands.
The grid smart command defines minimum via and wire grid.

The wire grid is set to the value you enter and remains in effect for the rest of the
autorouting session, unless you override it with a grid wire command. The via grid is
set differently. SPECCTRA calculates the initial via grid by using the formula:

 via grid = via diameter + 2 x (wire width + wire_via clearance) +
 wire_wire clearance

Use the direction option to set the grid value for only the x or y direction. Use the
offset option to offset the first grid point from the 0,0 origin coordinates.

111

If more than one through-via is available, the autorouter uses the smallest via
diameter for the initial via grid calculation. The grid is adjusted upward if necessary so
that it is an even multiple of the wire grid.

After routing pass three or when routing is 50% complete, the via grid is set to the
value entered. This grid is used for all subsequent routing passes unless you override
it with a grid via command.

The purpose of grid smart is to route initial passes with a larger via grid to avoid via
barriers and distribute vias. The smaller via grid prevents via-starving the autorouter
during later routing passes. The grid smart command allows two wires to route
between vias for a few routing passes, and then changes to one wire between vias
for better convergence.

Command example

grid smart (wire 0.001) (via 0.025)
grid smart (wire 0.05) (via 0.15) (offset 0.025)

grid snap

The grid snap command defines the pointer snap grid points for interactive editing of
an area such as a room, keepout, or boundary.

direction

Specifies a grid spacing value in the X direction (x) or the Y direction (y). If direction
is not set, the grid value (<positive_integer>) specifies a uniform grid in the X and Y
directions.

offset

Specifies the grid offset value (<positive_dimension>) for the offset of the first grid
point from the grid origin (0,0). If you use offset with the direction option, the offset
value applies only to the specified x or y grid coordinate.

Use this command to set a snap grid that controls pointer movement in the interactive
placement and routing modes (see the mode command for details about these
modes).

For instance, you can use the snap grid to control pointer movement when you draw
areas such as regions, fences, rulers, keepout areas, or rooms. You can also use it
when you move objects, edit wires, or add, edit, or cut polygons. The snap grid is not
used during any automatic placement or routing operation.

112

You can specify just a value (<positive_integer>) to set a uniform grid in both the X
and Y directions, or you can use the direction option to set the grid spacing for either
the X direction or the Y direction only. Use the offset option when you want to offset
the first grid point from the grid origin.

The default grid snap value is -1, which means no snap grid is used. If you set the
snap grid to a value greater than 0, the pointer snaps to the closest grid point as you
move it within the work area.

Notes

If you define a manufacturing grid, the X direction and Y direction values for the snap
grid must be multiples of the manufacturing grid direction values.

If you also define wire, via, or placement grids, pointer movement is controlled by the
wire or via grids (during interactive routing operations) and the placement grid (during
interactive placement operations) instead of by the snap grid.

See also

set show_snap_grid_cursor

Command examples

grid snap 0.1

grid via

The grid via command defines a via grid.

direction

Specifies an X or Y grid. If direction is not set, the grid is a uniform X and Y grid.

offset

Specifies an offset (<positive_dimension>) for the X and Y grids.

When you use the grid via command, an X, Y via grid is set to <positive_dimension>
in the current measurement units. The grid is uniform unless you specify a direction
option. Subsequent autorouting locates any new or rerouted vias on the specified
grid. Vias not involved in rip-up and reroute operations remain unchanged. If you
include a <via_id>, the grid applies only to subsequent use of that via.

Use the direction option to set the grid value for only the x or y direction. Use the

113

offset option to offset the first grid point from the 0,0 origin coordinates.

The grid via command overrides the via grid computed by the grid smart command.

Command examples

unit mil
grid via 100 V_40
grid via 100 (offset -0.05)

grid via_keepout

The grid via_keepout command controls whether the autorouter can use certain via
grid positions.

direction

Specifies an X or Y grid. If direction is not set, the grid is a uniform X and Y grid.

offset

Specifies an offset (<positive_dimension>) for the X and Y grids.

The autorouter is prohibited from placing vias on grid positions indicated by the
<positive_dimension> value. The <positive_dimension> value identifies X and Y via
keepout positions that are referenced to the absolute 0,0 coordinates of your design.
A value of 0 removes the grid via keepout.

Use the direction option to set the grid value for only the x or y direction. Use the
offset option to offset the first grid point from the 0,0 origin coordinates.

Command examples

grid via_keepout 100
grid via_keepout 0
grid via_keepout 0.5 (direction x)

grid wire

The grid wire command defines a routing grid.

114

direction

Specifies an X or Y grid. If direction is not set, the grid is a uniform X and Y grid.

offset

Specifies an offset (<positive_dimension>) for the X and Y grids.

When you use grid wire, an X, Y wire grid is set to <positive_dimension> in the
current measurement units. The grid is uniform unless you specify a direction option.
New routes or rerouted wires use the specified grid, except when entering or exiting
off-grid pins. Existing wires that don’t require rerouting are not changed. If you include
a routing layer name with the command, the grid applies only to that layer.

Use the direction option to set the grid value for only the x or y direction. Use the
offset option to offset the first grid point from the 0,0 origin coordinates.

The grid wire command overrides the wire grid set by the grid smart command.

Command examples

grid wire 25
grid wire 20 Layer1
grid wire 25 sig1 (direction y)

highlight

The highlight command graphically emphasizes certain design objects or routing
conditions for easy identification.

115

bend

All 90 or 45 degree wiring bends.

component

All pins of the named component.

color <color_name>

Specifies a highlight color. <color_name> can be any color currently defined in the
color map.

net

The entire guide of named nets.

116

no_fanout

All SMD signal pads without escape wires and vias after the last fanout command is
executed. If fanout (pin_type power) is executed, only power nets that don’ t contain
a fanout are highlighted with highlight no_fanout.

no_testpoint

All nets without a testpoint.

off_grid

Pins, wires, or vias that are off-grid and connected to a net. The all option specifies
all of the shapes listed. Unused pins are not highlighted.

incomplete_wires

Incomplete wiring in this sense includes:

pin-to-pin connections with a segment missing. Here, “missing” might or might not
include guide wires connecting the other segments.

segments that tee into a pin-to-pin connection but end without completing the
connection or end at a guide wire.

segments that start at a pin and end without completing the connection (but
segments that end at vias are presumed to be fanouts or test points and are not
deleted).

wires left dangling by the execution of a delete conflicts -segment command.

redundant_wires

Extra wire segments and vias on nets.

shield

All shielded wires, including the GND shield and tie-in vias.

no_shield

All wires that are supposed to be shielded but were not shielded because the
autorouter could not find space for the shield. A wire is not assigned a shield if it is
shorter than the min_shield value and it is not highlighted.

wrong_width

Highlights wires whose width has not been changed after executing the
change_width_by_rule command.

off

Turns off all highlighting.

testpoint_antennas

All test point antennas. A test point antenna is defined as a test point and associated

117

wiring connected to a net by a single wire.

testpoint_violations

All testpoints that violate current testpoint rules. Test points with the following
violations are highlighted

• the testpoint is on the wrong side of the design
• the testpoint is not on the proper testpoint grid
• there is a testpoint antenna when the rules disallow it
• the wrong type of via was inserted
• antenna is allowed but exceeds the maximum length

power_fanout_order_violations

All connections that violate a power_fanout rule. Power_fanout rules control the
order of fanout connections between power pins, vias, and decoupling capacitors.

order_violation

All out of order routed net connections. Any wire endpoints that constitute a violation
are highlighted. The endpoints could be pins, vias with 3 or more connections, or
tjunctions. All wiring segments in an order violating fromto are highlighted.

Order violations cannot be highlighted until rule checking has been performed with
order turned on in the check or setup_check command.

stack_via

All vias that partially or completely overlap vias behind them on other layers.

shield_tie_down_interval_overrun

All violations of the shield_tie_down_interval rule, which sets the maximum
distance permitted between stub wires that connect a shield to the ground plane.

Use highlight to visually locate objects or conditions in the PCB layout. For routing,
you can highlight components, signal nets, and various routing conditions such as
wire bends or incomplete wires.

When you highlight a component or signal net, SPECCTRA also highlights the pins,
wires, and guides on signal nets connected to the component. When you highlight a
signal net, SPECCTRA also highlights the pins, wires, and guides connected to the
net.

Objects and routing conditions are emphasized by coloring them with the highlight
color (in the default color map). You can change the highlight color by using the color
palette (View - Color Palette).

Optionally, you can specify a highlight color when highlighting nets or components by
name. The optional highlight color remains in effect until highlighting is turned off. The
net highlight color (default or optional) overrides the highlight color for pins of that net
on currently highlighted components. That is, a pin on a highlighted component is
redrawn in the color of its highlighted net.

118

Highlighting does not affect the routing or placement process.

Command examples

highlight bend 90
highlight net +5V
highlight net (color yellow) +5V
highlight no_testpoint
highlight shield

if

The if command executes one of two groups of autorouter commands based on
evaluating an expression.

The if command evaluates <expression>. If the value of <expression> is not zero, the
first <command_group> is executed. If the value of <expression> is zero, the
command group following the else keyword is executed. The else construct is
optional. The purpose of the if command is to allow alternative actions during the
autorouting process. The <expression> can include system variables, which are
defined under <system_variable> in the Design Language Reference. Operators
(such as & and !) are defined under the <numeric_binary_operator> descriptor in the
Design Language Reference.

Command examples

The first example initiates 25 route passes, then 2 clean passes. Next, the number of
wiring conflicts (conflict_wire) is checked. If there are fewer than five wiring conflicts,
two additional clean passes are executed, otherwise 50 additional route passes and 4
additional clean passes are executed. After the if block, the autorouter executes the
report status command.

route 25
clean 2
if (conflict_wire < 5)
 then (clean 2)
 else (route 50 16; clean 4)
report status route.sts

For general information about generating reports, see the Report Commands.

The next example uses system variables to determine whether the design includes
SMD components, and whether the top, bottom, or both layers are unselected. If true,
five fanout passes are executed. Otherwise autorouting proceeds by starting with the
route 25 command.

119

if (smd_pins && ! (top_layer_sel && bottom_layer_sel))
 then (fanout 5)

route 25
if (conflict_wire < 5)
 then (clean 2)
 else (route 50 16; clean 4)

image_pin_property

The image_pin_property command assigns properties to image pins.

<property_name>

A keyword that identifies a standard property or a user property. Each property you
assign must consist of a keyword (<property_name>) and a value
(<property_value>). The value might be another keyword, a number, or a character
string depending on what the property requires.

This command lets you assign both standard properties and user properties to one or
more pins on an image. You must specify the image name (<image_id>) and each
pin name (<pin_id>).

A property consists of the keyword <property_name> that identifies the property, and
a value <property_value>. Property values can be numbers, keywords, or character
strings depending on the property.

The standard properties for image pins include

force_to_terminal_point <property_value>
exit_direction <property_value>

Properties can be assigned in SPECCTRA or in the design file, but a property
assigned to a pin in the design file cannot be changed or removed in SPECCTRA.
Image pin properties apply to all instances of the image, but a component pin
property value assigned to a specific component pin takes precedence over the value
assigned to that property for the image pin.

You can use the report command to generate a property report that contains the
current values of properties assigned to all image pins in the design.

Command examples

image_pin_property C81 2 (uprop_1 0.02)

image_pin_property I6301 3 5 9 (uprop_2 xyz)

120

image_property

The image_property command assigns physical, family, and user properties to
images.

This command lets you assign both standard properties and user properties to one or
more images. The standard image properties consist of physical properties and family
names. Physical properties consist of type, height, and power dissipation.

In general, a property consists of the keyword (<property_name>) that identifies the
property, and a value (<property_value>). Property values can be numbers,
keywords, or character strings depending on the property. See image properties for a
list of properties you can assign to images.

You can either select the images before using this command or specify the name
(<image_id>) of each image. If you do not specify image names, SPECCTRA assigns
the properties to all selected images.

Properties can be assigned in SPECCTRA or in the design file. Image properties
apply to all instances of an image, but a component property value assigned to a
specific component instance takes precedence over the value assigned to that
property for the component’s image.

The standard image properties consist of physical and family properties.

• The physical properties identify an image’s type, maximum height, and maximum
power dissipation.

• The family properties assign or remove image family names used to assign family-
to-family pad and body edge spacing rules.

You can use the report command to generate a property report that contains the
current values of properties assigned to all images in the design. You can also
generate a total power dissipation report for the PCB and an image family report of all
image families.

Note

If you assign or remove physical or family properties on images, SPECCTRA does
not record these changes when you use the write command to save a placement file
or a session file. Physical properties assigned to individual component instances
(using component_property), or removed from components, are recorded in these
files.

See also

autodiscrete
autorotate

121

define room
initplace
interchange
place_rule
room_rule
select component
select family
select image
unplace

Command examples

The following examples assign properties to the named images.

image_property C0805 (type capacitor) (height 0.0280)

image_property plcc_20 plcc_28 (height 0.1800 -.1200)

image_property SOIC14 (power_dissipation 500)

The following examples assign properties to all selected images.

select image IC62 IC63

image_property (height -1 0.051)

image_property (family fam_1)

<family_descriptor>

Use <family_descriptor> to define a family of images.

The family property is a label you assign that identifies an image as a member of an
image family. you can assign the same image to more than one family, and a family
can contain one or more images.

After images to a family, you can use place_rule to assign pad edge and body edge
spacing rules between images in the family and images in other families.

Use reset family when you want to remove images from a family.

<physical_property_descriptor>

Use <physical_property_descriptor> to assign type, height, and power dissipation
properties to components or images.

122

type

Controls which small components are included for processing in the current automatic
placement operation. A small component is a component with three pins or less that
has not been assigned the large type property. The choices are

capacitor, which includes only small capacitors (small components assigned the
capacitor type property, and small components with all pins connected to power
nets and not assigned the resistor or discrete type property).

discrete, which includes only small discretes (small components assigned the
discrete type property).

resistor, which includes only small resistors (small components assigned the
resistor type property).

small, which includes all small components.

The default is small.

height

Assigns maximum and minimum component height constraints for a room. A value of
-1 for <max_height> or <min_height> means that height constraint is undefined. The
defaults are both -1.

power_dissipation

Assigns a maximum power dissipation value for total dissipation of all components in
the room. A value of -1 means the power dissipation constraint is undefined. The
default is -1.

The physical properties you can assign to a component or image consist of one or
two types (type), maximum height (height), and maximum power dissipation
(power_dissipation). You can assign or change any or all of these properties in the
same command.

• Use type when you want to classify components for placement rules or for
exclusive processing in automatic placement operations.

• Use height when you plan to constrain the minimum or maximum height of
components permitted in a room.

• Use power_dissipation when you plan to constrain the maximum total power
dissipation permitted in a room.

123

SPECCTRA recognizes the following component and image types:

• Large
• Small
• Capacitor
• Resistor
• Discrete

By default, a large component or image has more than three pins, and a small
component has three pins or less. The large and small types are mutually exclusive.
Assigning one of them removes the other. You can assign the large type to a
component or image with three pins or less, but you cannot assign the small type to a
component or image with more than three pins.

You can assign the capacitor, resistor, or discrete type to any small or large
component or image. These types are mutually exclusive. Assigning one of them to a
component or image removes either of the others.

A capacitor in SPECCTRA is defined as a decoupling (bypass) capacitor. If a
component with three or fewer pins, all connected to power nets, has not been
assigned the large, resistor, or discrete type, SPECCTRA automatically treats the
component as a capacitor.

SPECCTRA distinguishes between large and small components for processing in
automatic placement operations. You can also specify small capacitors, resistors, or
discretes for exclusive processing. Large capacitors, resistors, or discretes must be
processed with other large components.

You can assign separate image set placement rules for each type on the PCB or
within a room. Capacitor, resistor, or discrete type rules take precedence over large
or small type rules. See place_rule for details.

Note

See the define room and room_rule commands for details about setting placement
constraints for rooms.

If you assigned jumper heights to jumpers in the design file and you want to route
jumpers beneath components, you must assign to each component (or its image) a
height property with a value that is greater than any jumper height assigned to
jumpers in the design file.

<user_property_name>

A keyword that identifies a user property. Each property you assign must consist of a
keyword (<property_name>) and a value (<property_value>). The value might be
another keyword, a number, or a character string depending on what the property
requires.

A user property is treated as a label in SPECCTRA, but can have functional meaning
to the host layout system or a third party tool.

124

layer_property

The layer_property command assigns properties to layers.

<property_name>

A keyword that identifies a standard property or a user property. Each property you
assign must consist of a keyword (<property_name>) and a value
(<property_value>). The value might be another keyword, a number, or a character
string depending on what the property requires.

This command lets you assign both standard properties and user properties to one or
more signal or power layers. You must specify the layer name (<layer_id>) for each
layer.

A property consists of the keyword (<property_name>) that identifies the property,
and a value (<property_value>). Property values can be numbers, keywords, or
character strings depending on the property.

There currently are no standard properties available for layers.

Properties can be assigned in SPECCTRA or in the design file, but a property
assigned to a layer in the design file cannot be changed or removed in SPECCTRA.

You can use the report command to generate a property report that contains the
current values of properties assigned to all layers in the design.

Command examples

layer_property s1 (uprop_1 0.02)

layer_property s1 s2 (uprop_2 xyz)

license usage

The license usage command is used to check available and used licenses.

The license usage command creates a License Usage Report that lists licenses
available and licenses used. You can write the report to a file if you include a filename
instead of the window keyword. If you issue the command with neither a filename nor
the window keyword, the report is written to license.rpt in your current directory.

The following list shows the valid license names.

125

Command example

license usage window

For general information about generating reports, see the Report Commands.

limit

The limit command sets absolute controls that apply to each connection for the
number of intersecting wires, number of vias, number of bends, and the maximum
distance of wrong-way routes.

cross

The maximum number of crossing conflicts allowed when routing a connection.

via

The maximum number of vias that can be used to route a connection.

bend

The maximum number of bend points that can be used to route a connection.

way

The maximum wrong-way distance allowed for a connection.

The limit command allows you to specify global routing controls that apply to all pin-
to-pin connections.

The range of limit values for <positive_integer> is 0 through 255. You can set limit
values, perform some routing passes, and return to the default system values by
executing a limit command with a value of -1. If you don’t supply limit values, the
autorouter uses default values.

Command examples

limit via 3
limit way 300
limit way -1

126

miter

The miter command changes 90 degree wire corners to 135 degrees.

pin <setback>

Specifies a cut or an arc at a pin (includes SMD) if the pin-to-turn distance is equal to
or greater than <setback>. The pin setback distance is measured from the center of
the pin to the turn.

slant <setback>

Replaces a wrong-way segment with a 135 degree segment, or with an arc, when the
wrong-way length is equal to or greater than <setback>.

tjunction <setback>

Specifies changes to 135 degrees at wire tjunctions, where <setback> is the distance
from the tjunction to the start of the cut. The default value for miter tjunction
<setback> is 0.5 inch.

bend <start_setback> <final_setback>

Specifies a cut or an arc at a bend. The <start_setback> parameter specifies the
initial setback distance that is attempted. When all attempts fail during this initial
iteration, the value of <start_setback> is divided by two and the new value is
attempted in all remaining 90 degree bends. This process continues. After all
attempts fail, the previous setback value is divided by two, and that new value is
used. When the divide-by-two operation results in a value less than <final_setback>,
the <final_setback> value is applied until all miter attempts fail and the miter bend
operation terminates. When only <start_setback> is supplied, <final_setback>
defaults to the minimum wire width.

127

style

The miter styles are

• diagonal, which changes 90 degree corners to 135 degrees.

• round, which replaces 90 degree corners with an arc geometry that is fitted to the
corners. When the style option is round, the pin setback value is used for all corners.
If pin setback is not specified, the miter round setback defaults to 1 unit_line, where:

unit_line = wire width + wire_wire clearance

The unit_line value is computed by layer.

layer <layer_name>

Applies the miter operation to only the specified layers. If you enter multiple layer
names, separate them with a blank space.

This command is similar to the recorner command but with enhanced functionality.
When the style option is diagonal, corners with 90 degree bends are changed to 135
degrees. When the miter command is used without options, the operation applies to
all miter types and defaults to style diagonal. For example, the miter command is the
same as the following:

miter (pin) (slant) (bend) (tjunction) (style diagonal)

When a setback parameter is not supplied with a miter type, <setback> uses default
values. The default pin and slant <setback> value is 1 inch. The default bend
<start_setback> value is .5 inch. The default <final_setback> value is the minimum
wire width.

During the miter operation, the autorouter examines all 90 degree corners and
attempts to replace them with 135 degree corners, or with an arc, by using either the
specified or default setback values. If at least one miter attempt with a given setback
value is successful during a pass, the autorouter iterates with that setback value and
retries all remaining 90 degree corners.

If you must apply engineering changes or route the design again, use the unmiter
command to remove the 135 degree corners. The autorouter is more efficient when
rerouting orthogonal wires.

The miter types are defined as follows:

• pin <setback> specifies a cut or an arc at a pin (includes SMD) if the pin-to-turn
distance is equal to or greater than <setback>. The pin setback distance is measured
from the center of the pin to the turn.

128

• slant <setback> replaces a wrong-way segment with a 135 degree segment, or
with an arc, when the wrong-way length is equal to or greater than <setback>.

• bend <start_setback> <final_setback> specifies a cut or an arc at a bend. The
<start_setback> parameter specifies the initial setback distance that is attempted.
When all attempts fail during this initial iteration, the value of <start_setback> is
divided by two and the new value is attempted in all remaining 90 degree bends. This
process continues. After all attempts fail, the previous setback value is divided by
two, and that new value is used. When the divide-by-two operation results in a value
less than <final_setback>, the <final_setback> value is applied until all miter attempts
fail and the miter bend operation terminates. When only <start_setback> is supplied,
<final_setback> defaults to the minimum wire width.

• tjunction <setback> specifies changes to 135 degrees at wire tjunctions, where
<setback> is the distance from the tjunction to the start of the cut. The default value
for miter tjunction <setback> is 0.5 inch.

• layer <layer_name> applies the miter operation to only the specified layers. If you
enter multiple layer names, separate them with a blank space.

The miter styles are

• diagonal, which changes 90 degree corners to 135 degrees

• round, which replaces 90 degree corners with an arc geometry that is fitted to the
corners. When the style option is round, the pin setback value is used for all corners.
If pin <setback> is not specified, the miter round setback defaults to 1 unit_line,
where:

unit_line = wire width + wire_wire clearance

The unit_line value is computed by layer.

129

Note

If you apply miter to a differential pair that is routed on-grid, the wires may be moved
to position the center point between the pair on-grid.

See also

unmiter command, which removes the 135 degree corners created by miter.

Command examples

miter
miter (pin 50) (slant 100) (bend 1000 50) (style diagonal)

mode

The mode command sets the left mouse button mode.

<interactive_routing_mode>

The keyword or keywords for the interactive [LB] mode you want to set. You can set
[LB] to route, edit, move, copy, or delete wires or wiring polygons, change via
attributes or wire widths, draw area outlines, select and unselect design objects, or
perform other interactive operations.

<interactive_placement_mode>

The keyword or keywords for the interactive [LB] mode you want to set. You can set
[LB] to place or relocate components, edit generated devices, draw area outlines,
select and unselect design objects, or perform other interactive operations.

This command sets the interactive [LB] mode. You can set modes for interactive
routing and for interactive placement and device editing. The current [LB] mode
determines what action results when you click or drag the mouse in the work area.

To set a mode, you use the keyword(s) that identify the mode.

See draw modes for information about using [LB] to draw fences, keepout areas,
regions, or rulers.

130

Note

The Mode Status Area along the bottom of the SPECCTRA window indicates the
current interactive mode.

Command examples

mode measure
mode slide
mode copying
mode critic wire
mode change_conn
mode change_polygon
mode change_via
mode change_wire
mode cut
mode delete wire
mode merge poly_wire
mode merge keepout
mode select guide
mode edit fence

Interactive routing modes

Click on a mode option to see its description. The following list shows the keywords
you use to set an interactive routing mode in the mode command.

change connectivity
change_polygon
change_via
change_wire
check_area
copying
copy polygon
critic wire
cut
cut_polygon

<delete modes>

delete keepout
delete net
delete poly_wire
delete segment
delete wire

<edit modes>
edit
edit fence
edit keepout
edit polygon
edit region
edit ruler

131

<edit topology modes>
pick net
pin attribute
add virtual pin
delete virtual pin
move virtual pin
reorder guides
fix/unfix pins
set fromto rules

highlight
measure
merge poly_wire
merge keepout
repair net
rotate_via (available only with RouteMVIA license)

<select modes>
select comp
select guide
select net
select pin
select poly_wire
select wire

slide

See draw modes in interactive routing for information about using [LB] to draw
fences, keepout areas, regions, or rulers.

change_conn

Sets [LB] to change the net assignment of floating wires or wiring polygons to an
existing net chosen from the Change Connectivity Setup net list dialog box.

change_polygon

Sets the [LB] to change the layer or net assignments for wiring polygons.

change_via

Sets the [LB] to do any or all of the following:

• replace a via with another type of via
• change testpoint attributes of a via.
• change fanout attributes of a via
• change the number of rows or columns in a via array. (Available only with the
RouteMVIA license)

change_wire

Sets the [LB] to change the width of individual segments of routed wires.

132

check_area

Sets the [LB] to find and mark routing and placement violations within a rectangular
bounding box. You define the bounding box by dragging with the [LB].

copying

Sets the [LB] to copy wires and vias.

You can copy an existing wire to an unroute with a similar length and path. You can
also copy escape wires and vias, with their escape attributes, from a component to
another component with the same image.

Note

You cannot copy a wire that belongs to a power net.

copy polygon

Sets the [LB] to copy individual objects or objects within a rectangular area. You can
copy wiring polygons and keepout areas.

critic wire

Sets the [LB] to remove extra bend points in a single wire or in several wires if you
draw a bounding box

cut

Sets the [LB] to divide a single wire segment into two segments. A single mouse click
divides a wire segment at the cursor location. Two mouse clicks in different positions
divide all the wire segments that cross a line drawn between the two locations.

cut_polygon

Sets the [LB] to cut a rectangular area out of an existing polygon. Cuts are made as
follows:

• Where two or more polygons overlap, only the top polygon is cut.

• Only orthogonal and 45-degree polygons are cut.

• Polygons cannot be divided into pieces using this command.

• Connectivity is recalculated when a wiring polygon is cut.

• If a top level keepout defined in the design file is cut, the changes are saved
when you write a session file.

delete

Sets [LB] to delete segments, wires, nets, or keepout areas. The choices are

delete segment, which sets the [LB] to remove a single wire segment.
delete wire, which sets the [LB] to delete all segments between two terminal
points. A terminal point is a pin, via, or tjunction.

133

delete keepout, which sets the [LB] to remove keepout areas. You cannot remove
keepouts defined in an image.
delete poly_wire, which sets the [LB] to remove wiring polygons.
delete net, which sets the [LB] to delete all wires and vias on a net. The net is not
deleted.

edit

Sets [LB] to route or edit wires and wiring polygons, or to draw area objects such as
keepouts or regions. The choices are

edit, which lets you route new wires or edit existing wires.

edit polygon, which lets you draw a rectangular wiring polygon.

edit fence, which lets you draw a route keepin area.

edit keepout, which lets you draw areas where you want to prohibit routing or
placement. The type of keepout you draw determines what objects are prohibited.

edit region, which lets you draw the area for which you want to define certain
routing rules.

edit ruler, which lets you draw a calibrated ruler anywhere within the work area.

edit topology

Sets [LB] to one of the topology editing modes. The choices are

pick_net, which lets you pick (select) a net for topology editing.

pin_attrib, which lets you assign the source, load, terminator, expose, or no
expose attributes to the pins of the net you are topology editing.

add_virtual_pin, which lets you add virtual pins to the net you are topology
editing.

remove_virtual_pin, which lets you delete virtual pins from the net you are
topology editing.

move virtual_pin, which lets you move the virtual pins of the net you are topology
editing.

reorder and reorder_by_comp, which let you change the order or connectivity of
the net you are topology editing. You can specify starburst, daisy, mid-driven
daisy, or balanced daisy net ordering.

fix_pin, which lets you disallow/allow routing to pins of the net you are topology
editing.

set_rules, which lets you set fromto rules for individual fromtos of the net you are
topology editing. You can set clearance, wiring, timing, shielding, crosstalk, and
noise rules.

forget_fromto, which lets you remove fromto rules for individual fromtos of the net
you are topology editing.

highlight

Sets the [LB] to highlight nets interactively.

134

measure

Sets the [LB] mode to Measure mode. You can use this mode to measure the
distance between two points or extract information about routing objects and design
rule violations at a specific coordinate. SPECCTRA displays measurement
information in the output window, message area, and coordinate area. Object and
rule information is displayed in the output window and message area.

merge keepout

Sets the [LB] to the merge keepout mode. You can merge overlapping keepout
polygons that are the same type, occupy the same layers, and have the same rules
within an area by sweeping the pointer across the area.

merge poly_wire

Sets the [LB] to the merge poly_wire mode. You can merge overlapping wiring
polygons that belong to the same net and occupy the same layers within an area by
sweeping the pointer across the area.

repair net

Sets [LB] to delete wire segments that violate fromto order rules on a net. A fromto is
a user-specified pin-to-pin connection.

rotate_via

Sets the [LB] to rotate a via in ninety-degree increments.

select

Sets [LB] to select objects for routing operations, or unselect objects that are already
selected. The object_type must be one of the following:

component, which sets [LB] to select or unselect components.
net, which sets [LB] to select or unselect nets.
wire, which sets [LB] to select or unselect wires.
guide, which sets [LB] to select or unselect unroutes.
pin, which sets [LB] to select or unselect component pins.
poly_wire, which sets [LB] to select or unselect wiring polygons.

slide

Sets the [LB] to move individual objects or objects within rectangular areas. You can
move wire segments, vias, wire corners, polygons (wiring polygons and keepout
areas), and polygon edges.

Draw modes

Use the mode edit command to set [LB] to a drawing mode. You can

• Draw fences in Draw Fence mode.

• Draw keepout areas in Draw Keepout mode.

135

• Draw regions in Draw Region mode.

• Draw rulers in Edit Ruler mode.

Drawing a fence

A fence is an autorouting keepin area, drawn as an enclosed shape consisting of
corners (vertexes) connected by lines. To draw a fence in Draw Fence mode, click
the location for each corner. SPECCTRA draws the lines between the corners. If the
location of the last corner is not the same as the location of the first corner,
SPECCTRA closes the outline for you.

You can draw a fence on a single layer or on all signal layers. Connections are routed
within the fence depending on the fence setting for the design, which will be either
hard (the default) or soft. See the set soft fence command for more information.

Use the fence command instead of Draw Fence mode if you want to specify the exact
X and Y coordinates for each corner of the outline.

If you want to change the shape or location of an existing fence, you must delete and
redefine it. Use the delete fence command to remove a fence.

Note: Hard and soft fence types cannot coexist. Either all fences in a design are hard
or all are soft.

Drawing a keepout area

A keepout area is an enclosed shape consisting of corners (vertexes) connected by
lines. To draw a keepout area in Draw Keepout mode, click the location for each
corner. SPECCTRA draws the lines between the corners. If the location of the last
corner is not the same as the location of the first corner, SPECCTRA closes the
outline for you.

You can draw a keepout area on a single layer or on all signal layers. Prohibited
objects cannot touch or cross a keepout outline. Use the define keepout command
instead of Draw Keepout mode if you want to specify the exact X and Y coordinates
for each corner of the outline.

If you want to change the shape or location of an existing keepout area, you can use
the Edit Polygon mode or you can disband and redefine it. Use the forget command
to disband keepout areas. You can disband any keepout area defined in SPECCTRA,
but you cannot delete keepout areas defined in the image section of the design file.

Drawing a region

A region is a routing rule area drawn as an enclosed shape consisting of corners
(vertexes) connected by lines. To draw a region in Draw Region mode, click the
location for each corner. SPECCTRA draws the lines between the corners. If the
location of the last corner is not the same as the location of the first corner,
SPECCTRA closes the outline for you.

You can draw a region on a single layer or on all signal layers. Use the define region
command instead of Draw Region mode if you want to specify the exact X and Y
coordinates for each corner of the outline.

By default, rules assigned to a region apply to all nets in the region. Optionally, you

136

can define a region in which rules apply only to a specific net, to a specific class of
nets, or between two classes. Use the rule command to assign rules to a region.

If you want to change the shape or location of an existing region, you must disband
and redefine it. Use the forget command to disband regions.

Drawing a ruler

A ruler is a graduated scale drawn between two points in the work area. Every fifth
tick mark is labeled with a distance value. To draw a ruler in Edit Ruler mode, click
once at the desired start point and once at the desired end point.

You can draw horizontal, vertical, or 45 degree diagonal rulers. To draw 45 degree
rulers, the Snap Angle option must be set to either 45 Degrees or All in the Interactive
Routing Setup dialog box. The default Snap Angle is 45 Degrees.

net_property

The net_property command assigns properties to nets.

<property_name>

A keyword that identifies a standard property or a user property. Each property you
assign must consist of a keyword (<property_name>) and a value
(<property_value>). The value might be another keyword, a number, or a character
string depending on what the property requires.

This command lets you assign both standard properties and user properties to one or
more signal or power nets. You can either select the nets before using this command
or specify the name (<net_id>) of each net. If you do not specify net names,
SPECCTRA assigns the properties to all selected nets.

A property consists of the keyword (<property_name>) that identifies the property,
and a value (<property_value>). Property values can be numbers, keywords, or
character strings depending on the property.

There currently are no standard properties available for nets.

Properties can be assigned in SPECCTRA or in the design file, but a property
assigned to a net in the design file cannot be changed or removed in SPECCTRA.

You can use the report command to generate a property report that contains the
current values of properties assigned to all nets in the design.

Command examples

net_property sig1 (uprop_1 0.02)

net_property sig2 sig3 (uprop_2 xyz)

net_property (uprop_3 1.2)

137

order

The order command controls whether nets are routed in daisy-chain or starburst
fashion.

starburst

Permits multiple entries and exits on pins.

daisy

Permits only a single entry and a single exit in the net on each pin and does not
allow tjunctions. This is called a simple daisy chain. You can choose mid-driven or
balanced daisy chain routing by using the type option.

type

Controls how a net is ordered for daisy chain routing. The choices are:

mid_driven, where a terminator is placed at each end of the net, and the loads
are added back to a source. If there is more than one source, the sources are
chained together first before the rest of the net is processed.

balanced, where fromtos are daisy-chained and loads are equally distributed
between source and terminator pins. If more than one source pin is defined, the
terminator and load branches are chained back to the closest source pin and the
remaining source pins are ordered as simple daisy chain.

selected

Only the nets that are selected are ordered.

all_net

Any nets that are not fixed are ordered.

net

Orders the net named in <net_id>.

When SPECCTRA reads a design file, it breaks up multiple pin nets into two terminal
connections. The manner in which connections are broken up depends on whether
you have any daisy-chain order controls in your design file. If net order controls are
not included in the design file, SPECCTRA orders all nets in starburst fashion.

The order command changes the original net ordering. Before you execute this

138

command, you must decide whether you want all nets in the design to be reordered
or whether you want a different ordering for a few critical nets. You can select the
nets to be ordered by using the mouse in select mode or by direct command entry.

When you execute the order command, the specified nets are reordered with the
order type that you specify. The order command applies only to unrouted nets. Nets
that are already routed cannot be ordered.

The best routing results are obtained when nets are ordered as starburst.

If nets in a design file include source, load, or terminator pins, but don’t include a
reorder control, you must execute an order daisy command to route them in a daisy-
chain fashion from the source to load to terminator.

After you execute an assign_pin command, you must execute an order daisy
command to reorder the pins you assigned source, load, and terminator properties.

When you have fromtos ordered in a design file, you must use the forget net
command before you can use the order command to reorder those fromtos.
Remember, forget net disbands all net rules.

Command examples

order daisy (type mid_driven)

order daisy (type balanced)

protect/unprotect

The protect command prevents the autorouter from ripping-up and rerouting existing
wires, and vias. The unprotect command reverses protect.

139

all

Protects/unprotects the following choices:

testpoints, which includes all test points

vias, which includes all vias

Use the testpoints option to specify all testpoints and vias inserted or marked by the
testpoint rule. Use the vias option to specify all types of vias.

all poly_wires

Use the all poly_wires option to protect/unprotect wiring polygons. This command
has no affect on wires. See all wires instead.

all wires

Protects/unprotects wiring. Use the all wires option to protect/unprotect routed wires.
This command has no affect on poly_wires. See all poly_wires instead.

selected_wires

Protects/unprotects only the wiring that is currently selected. No other selected
routing objects are protected or unprotected.

layer_wires

Protects/unprotects all routed wires on layer <layer_id>. Multiple layer names can be
included.

class

Protects/unprotects all routed wiring of nets included in class <class_id>. Multiple
class names can be included.

140

net

Protects/unprotects all routed wiring for the net <net_id>. Multiple net names can be
included.

selected_poly_wires

Protects/unprotects only the wiring polygons that are currently selected. No other
selected routing objects are protected or unprotected.

attr

Protects/unprotects only those vias with the named attribute. If multiple attributes are
assigned to a via, you can protect/unprotect that object by using any one of the
attributes.

Use the fanout option to protect/unprotect only the vias created with the fanout
command.

Use the test option to protect/unprotect all vias added by the testpoint command.

attr

Protects/unprotects only those wires with the named attribute. If multiple attributes
are assigned to a wire, you can protect/unprotect that object by using any one of the
attributes.

Use the fanout option to protect/unprotect only the wires routed with the fanout
command.

Note: This option does not protect wires routed interactively from fanout vias
created with the fanout command or translated from the host layout system.

Use the bus option to protect/unprotect only the wires routed with the bus command.

type soft

Protects/unprotects all wires and vias that the autorouter can push and shove when
space is needed for other routing.

type_route_mode

Controls whether wires and vias defined as type route in the design file are
unprotected when you use subsequent unprotect commands to unprotect wires or
vias.

• Using unprotect type_route_mode means that wires defined as type route
can be unprotected by subsequent commands.

• Using protect type_route_mode means that wires defined as type route
cannot be unprotected by subsequent commands.

The default is that wires defined as type route cannot be unprotected by subsequent
commands.

Use the protect command to protect preroutes and other design objects that you

141

want to preserve. You can also use the command when you want to preserve fanout
or bus routing or to preserve the routing after you read wires from an external file.
Use the unprotect command to remove the protect status from objects.

Note

Protect and unprotect apply to routed wires. See the fix and unfix commands to
control routing of nets.

Unprotect does not affect wires marked as (type fix) in the design file.

Command examples

protect all wires
protect all wires (attr fanout)
protect all wires (attr bus)
unprotect all wires (attr bus)
unprotect selected_wires

protect net CLK1
unprotect net CLK1

protect layer_wires s2 s3
unprotect layer_wires L2 L3

protect all vias (attr fanout)
unprotect all vias

protect all testpoints
unprotect all testpoints

quit

The quit command exits SPECCTRA.

The quit command terminates SPECCTRA operation. If you have unsaved changes
in the design, SPECCTRA prompts you to save changes in a session file and
provides the option of deleting the current did file. If you have no unsaved changes,
you are offered the option of deleting the current did file.

The quit command can be entered from the Command entry area or from a do file.

You can also quit by clicking Quit on the File menu.

If you use the -quit switch when you start SPECCTRA, operation immediately
terminates after the last command executes in the start-up do file.

Command example

quit

142

read colormap

The read colormap command loads a color map file.

colormap

Loads a previously saved colormap from the named file. The form option loads the
colormap into the current palette instead of into the session and displays the Load
Colormap dialog box for interactive adjustments of color and pattern selections.

When you use this command, SPECCTRA reads the named color map file. The color
map file contains data that defines the display colors and patterns for design objects
and graphical features in the work area.

Note

For general information about specifying filenames, see File Naming Conventions.

See also

write colormap

Command Example

read colormap color1.std

read keepout

The read keepout loads keepouts from a session file.

keepout

Loads top-level keepouts from a session file that contains data from a previous
routing session.

When you use this command, SPECCTRA loads top-level keepouts that are in the
session file. Only keepouts that you add, modify, or delete are saved in the session
file. Top-level keepouts are keepouts defined in the structure section of the design file
or session file.

Command example

read keepout design.ses

For general information about specifying filenames, see File Naming Conventions.

143

read routes

The read routes command loads a routes file.

routes

Loads a routes file that contains data for all routed wires and vias, plus additional
information for translating the route data back to the host layout system.

ignore_net

Disables the use of net names recorded in the Net_out section of the routes file, and
enables SPECCTRA to determine net names based on the pins, wires, and vias on
the design.

type

Limits the wires read from the routes file to:

protect, which reads only protected wires
unprotect, which reads only unprotected wires

This command reads files that are created with the write routes command. When
you read a routes file, any existing wires are replaced by wires in the routes file. If you
don’ t want to merge the wires in the routes file with existing wires, use delete all wires
before you execute read routes.

If you use write session and restart SPECCTRA with a session file, you don’t need to
read the routes file in a separate operation.

When you change a netlist in your layout system, you can apply engineering change
orders (ECOs) in the autorouter by loading your design file with the wires or routes
file. You can use the read routes command with the ignore_net option to load the
routes file for ECO processing. This disables the use of net names recorded in the
Net_out section of the routes file, and enables SPECCTRA to determine net names
based on the pins, wires, and vias on the design.

Command examples

read routes rev_c.rte
read routes (ignore_net) rev_d.rte

For general information about specifying filenames, see File Naming Conventions.

read wire

The read wire command loads a wires file.

144

wire

Loads a wires file that contains data for all routed wires and vias.

type

Limits the wires read from the wires file to:

protect, which reads only protected wires
unprotect, which reads only unprotected wires

You can read wires from an external file and add the wires file data to existing wiring.
Any existing wires that are redundant with wires in the wires file are replaced. If you
don’t want to merge existing wires, use delete all wires before you execute read wire.

Use a delete all wires and read wire command sequence to view the routing results
from different autorouting sessions.

Note

The preferred method of reading wire data during autorouting is to specify the wires
file with the Startup dialog box.

Command example

read wire rev_a.w

For general information about specifying filenames, see File Naming Conventions.

recorner

The recorner command changes 90 degree wire corners to 135 degrees. See the
miter command for improved function.

pin

Changes wire corners at pin and via exits to 135 degrees if the corner occurs at or
above the <setback> distance. Rectangular pads are excluded from this operation.

145

slant

Replaces two 90 degree corners with two 135 degree corners.

bend

Changes a 90 degree corner to a 135 degree corner.

round

Replaces 90 degree corners with arcs.

diagonal

Performs all pin, slant, and bend operations. The three <setback> values are for pin,
slant, and bend, respectively.

<setback>

The <setback> value is a positive dimension you provide. If you do not provide a
<setback> value, the following default values are used:

pin, slant 1 inch

bend 0.5 inch

round Sum of wire width plus wire_wire clearance

The recorner command changes corners from 90 to 135 degrees to improve
manufacturability. The round option, which replaces square corners with arcs, is
available only with a fast-circuit license. The pin, slant, and bend options control
which corner locations are changed. If <setback> is not supplied, default <setback>
values are used. The <setback> value must be a positive dimension. Each corner is
checked before chamfering to avoid creating new conflicts.

The recorner diagonal command performs pin, slant, and bend operations
simultaneously. If you enter the recorner diagonal command without setback values,
the autorouter uses default setback values.

If you apply engineering changes or reroute the design, use the unmiter command to
remove the 135 degree corners. The autorouter is more efficient when it is rerouting
orthogonal wires.

For illustrations of the recorner options, see the miter command.

Setback is rounded up to the nearest wire grid dimension unless a wire grid is not
specified (gridless). If the setback for a round corner is too large for the arc to be
completed, the setback distance is reduced until the arc fits.

Usually, the recorner command is executed as the last step in the autorouting
process, just before routing is returned to the host system.

Command examples

recorner bend 0.250
recorner diagonal 0.5 0.5 0.5

146

undo/redo

The undo command reverses interactive routing, editing, and placement operations.
The redo command reapplies interactive operations that were reversed by undo.

You can reverse a single interactive operation by entering the undo command or by
using [F3] or [Undo].on your keyboard. You can also reverse a series of operations
by entering a series of undo commands.

You can immediately redo an operation that was reversed by the undo command.
You can also redo a series of undo operations by entering multiple redo commands
or by using shortcut keys. The shortcut keys to redo an operation are
[Shift] [F3] or [Shift] [Undo].

The interactive routing and editing operations that can be reversed with undo and
reapplied with redo are

Add/Edit Polygon
Change Connectivity
Change Polygon
Change Via
Change Wire
Copy Polygon
Copy Route
Critic Route
Cut Segment
Cutout Polygon
Delete (all modes except Repair Net)
Edit Route
Merge Wiring Polygon
Move
Select/Unselect (except pins)

If there is no command operation in memory to undo, an information dialog box
appears with the message

Nothing (more) to undo.

Note

Repair Net operations, Edit Topology operations, and Select/Unselect gate, subgate,
pin, and terminator operations cannot be reversed by undo or reapplied by redo.

Command example

unplace all
undo

redo

147

reduce_padstack

The reduce_padstack command controls whether smaller layer shapes are
substituted for through-pins.

on

The reduce_padstack on command directs the autorouter to immediately substitute
the alternate shapes regardless of the conflict reduction status. Once the alternate
shapes are substituted, you can’t restore the larger shapes unless you restart
SPECCTRA.

auto

The reduce_padstack auto command can be used if you expect the autorouter to
have difficulty converging to a 100% solution. The autorouter monitors progress and
substitutes the smaller padstacks if the conflict reduction rate is too low.

off

The reduce_padstack off command turns off the reduce_padstack auto function.
This command is effective only if the autorouter has not already substituted alternate
shapes. Once alternate shapes are substituted, reduce_padstack cannot be turned
off. The reduce_padstack command defaults to off if not specified.

The reduce_padstack command frees critical routing space on dense PCBs. When
you execute reduce_padstack, the autorouter substitutes alternate, smaller padstack
shapes on certain layers. The substitution applies only to through-pins, and the
alternate padstack shapes must be included in the design file. The smaller shapes
are substituted by layer only where there are no connections to the default shapes on
a layer. The smaller shapes free routing space that is critical to completing a difficult
PCB.

For additional information, see <reduced_shape_descriptor> in the Design Language
Reference.

Command examples

reduce_padstack on
reduce_padstack auto
reduce_padstack off

release license

The release license command checks a license back in to the pool of available
licenses for all SPECCTRA users.

148

Use this command to release a feature license from a SPECCTRA session without
ending the session. A license released in this way becomes available for other
SPECCTRA users.

The following list shows the valid license names for SPECCTRA features. License
names for your version of SPECCTRA will be either standard format or RPP format.
Use the appropriate style for <license_name>, or use the abbreviation.

Tip

Use the license_usage command to see a list of licenses currently checked out to
your SPECCTRA session.

Note

If you use “all” for <license_name>, all licenses except ViewBase are checked in.
ViewBase is the minimum license required to keep the session running.

Command example

release license RouteADV

repaint

The repaint command refreshes the work area portion of the SPECCTRA window.

When you enter the repaint command, all visible layers are redrawn in the order they
appear in the layer panel, from bottom to top.

If you are routing interactively and have set the active and alternate layers, those
layers are drawn on top.

Tip

You can press the [ESC] key (escape), when the mouse pointer is in the work area,
to halt screen repainting.

Notes

You can use the repaint option in the set command to disable or enable all repaint
operation, or to permit repaints only when you explicitly perform a viewing operation
(such as zoom, pan, or repaint). All repaints are enabled by default.

You can also use the dofile_auto_repaint option in the set command to control
whether SPECCTRA repaints the work area after operations performed by
commands in a do file.

Command example

repaint

149

report

The report command generates a routing or placement report.

<report_type>

You use a report keyword to generate a specific report with the report command. You
can generate the following reports:

class
class_class
component <component_id>
corners
crosstalk
ecl
group
group_set
keepouts
layer <layer_id>
length
net bundles
net <net_id>
no_fanout
order_violations [(no_stubs)]
padstack
pairs
power_fanout_order_violations
property (<property_objects>)
regions
stack_via_depth
status
testpoint
unconnect
vias

file

Displays the specified file in the report window. You must specify the name of an
existing text file.

150

design

Displays the current design file in the report window. You cannot save the design to a
new file, and you cannot run report design from a do file.

See the Design Language Reference manual for a description of the syntax used in
the design file.

invocation

Lists all error and warning messages generated when starting SPECCTRA.

selected_objects

Lists information about selected objects. You must select one or more of the nets,
components, images, guides, wires, and pins that you want information about.

The net information includes name, number of pins, vias, wires, and tjunctions for
each net, and routing length data.

The component information includes name, rotation, layer placed on, X and Y
coordinate location, part number, and type for each component.

The image information includes name and number of pins for each image, and
reference designator of each component instance.

The guide information includes fromto data, Manhattan length of unrouted
connections, and actual length of the routed portion of unfinished connections for
each guide.

The wire information includes fromto data identified by component reference
designator and pin number, or object type, and X and Y coordinate location for
each wire segment, and layer on which wire segments are routed.

The pin information includes component reference designator and pin number, or
object type, X and Y coordinate location, and padstack for each pin, and layers on
which pins are connected.

The default report filename is selobj.rpt.

See selected objects report for detailed descriptions of the information contained in
this report.

This command displays a placement or routing report in the report window, saves a
report in a text file, or displays a text file in the report window.

• Use a report type to generate a report about a placement or routing object or a
current design condition. See <report_type> for a description of the different
reports you can generate.

• Use file to display the contents of a text file in the report window.

• Use design to display the design file in the report window.

• Use selected_objects to display a list of all currently selected placement and
routing objects in the report window.

• Use invocation to display a list of startup errors in the report window.

151

When you generate a report, you can

• Use window to display the report in the report window.

• Use <filename> to save the report to a specific directory with a specific filename.

Each <report_type> has a default filename. If you do not include either a filename or
the window keyword, SPECCTRA uses the default filename and saves the report in
the design directory. You must supply a filename to save a report file in a different
directory. See file naming conventions for related information.

Notes

The component, net, netlength, and layer reports provide information about a
particular component, net, or layer. The eco report provides information about
changes between a particular design and another iteration of the design. To generate
one of these reports

• Specify the component reference designator (<component_id>)
• Specify the net name (<net_id>)
• Specify the layer name (<layer_id>)
• Specify the design name followed by the changed design name (<old.dsn>
<new.dsn>)

Command examples

report class
report file board3.do
report design
report net sig18 sig18.rpt
report selected_objects

<report_type>

class

Lists all defined classes and the nets contained in each class.

The default report filename is classes.rpt.

To list current class rules, use the report rules command.

class_class

Lists rules assigned to all defined class-to-class pairs.

The default report filename is clscls.rpt.

You can also list current class-to-class rules, by using the report rules command.

component

Lists component type, image name, side, rotation, and location information about a
component. You can either select the component or specify its reference designator
(<component_id>). This report lists all placement rules that currently apply to the
component, and includes assigned image and component properties.

152

This report also lists information for each component pin, including position, padstack,
net name, and assigned image pin and component pin properties.

The default report filename is comp.rpt.

See component report for descriptions of the information contained in this report.

corners

Summarizes the status of all routed corners in the design, listing corners that are 90
or 135 degree angles, arcs, and other angles.

It identifies how many 90 degree corners remain after running recorner or miter
commands.

The default report filename is corners.rpt.

crosstalk

Lists the parallel and tandem segment crosstalk and noise rules in effect, indicates
rule violations, and lists the amount of overlap. The rule violation information includes
location, and the net names, pin-to-pin connections, and signal layers involved.

When you generate this report, SPECCTRA also indicates crosstalk violations
graphically by a white box between offending wire segments. The long side of the box
runs the length of the rule violated.

The default report filename is xtalk.rpt.

ecl

The emitter coupled logic (ecl) report lists net order violations with pin names and the
routed lengths between source and terminator pins.

The default report filename is net_ecl.tmp.

group

Lists all currently defined groups of fromtos. Data is listed by group and includes
group names, net names, and the pin-to-pin connections assigned to the group.

The default report filename is group.rpt.

To list current group rules, use the report rules command.

group_set

Lists the number of defined group sets, and includes the names of the groups in each
group set.

The default report filename is grpset.rpt.

To list current group set rules, use the report rules command.

keepouts

Lists all defined keepouts, and includes type, shape, layer, and coordinate
information for each keepout.

153

The default report filename is keepouts.rpt.

See keepouts report for descriptions of the information contained in this report.

layer

Lists layer properties and their values assigned to a layer. You must specify the layer
name (<layer_id>).

The default report filename is layer.rpt.

length

Lists all nets that have length or delay rules, the current values of these rules, the
actual routed length or timing delay of each net, the total violations, and an error
message for each net or fromto violating the rules.

This report also includes length factor, effective via length, and pair average length
information.

The default report filename is lengths.rpt.

See length and delay rules report for a general description of this report.

net

Lists information about a net, including name, fixed status, classes the net is
assigned to, number of pins, vias, wires, tjunctions, and routing length data for the
specified net. You must specify the net name (<net_id>). This report lists all rules that
currently apply to the net, and includes assigned net properties. The net report also
contains a network, connections, and routing section for each net.

The default report filename is net.rpt.

See net report for descriptions of the information contained in this report.

You can also list current net rules, by using the report rules command.

net bundles

Lists each net or fromto in defined bundles (busses) and their layer gaps. If a bundle
gap is not specified, SPECCTRA uses the largest wire-to-wire clearance rule of the
nets comprising the bundle, and the report states

No Bundle Gap Specified

The default report filename is bundles.rpt

no_fanout

Lists all component pins that lack an escape wire and via after the last fanout
command runs. The pin information includes pin reference, X and Y location,
padstack ID, and associated net name. Only pins that match the last used pin_type
option in the fanout command appear in the report.

You can use this report to determine whether pins failed the fanout operation. You
can further determine whether pins are blocked or cannot escape due to rule settings.

The default report filename is nofanout.rpt.

154

See pins without vias report for descriptions of the information contained in this
report.

order_violations

Lists order violations and stub length rule violations (or just order violations if you use
the no_stubs option) by net ID and the X,Y coordinate locations where the violations
occurred.

The default report filename is order_viols.tmp.

padstack

Lists the via, pin, and SMD padstacks from the library section of the design file. See
the Design Language Reference for descriptions of syntax for padstack properties.

The default report filename is padstack.rpt.

To list current padstack rules, use the report rules command.

pairs

Lists each net or fromto in defined differential pairs and their pair gap. If a pair gap is
not specified for a differential pair, SPECCTRA uses the wire-to-wire clearance rule
and the report states

No Pair Gap Specified

The default report filename is pairs.rpt.

power_fanout_violations

Lists all fanned-out pins that violate current power fanout rules and reports the total
number of violations.

The default report name is pwr_fan_order_viol.rpt.

property

Lists object properties and their current values. The report lists object names,
property types (system or user), property names, and property values. You must
specify one or more object types (<property_objects>) to include in the report. The
choices are

component lists the properties assigned to each component in the design.

component_pin lists the properties assigned to each component pin in the
design.

image lists the properties assigned to each image in the design.

image_pin lists the properties assigned to each image pin in the design.

The default report filename is property.tmp.

regions

Lists all defined regions, and includes type (region, net region, class region, or
class_class region), shape, layer ID, and X and Y coordinates for each region.

155

The default report filename is regions.rpt.

See regions report for descriptions of the information contained in this report.

To list current region rules, use the report rules command.

stack_via_depth

Lists violations of the stack_via_depth rule

status

Lists a summary of routing data for the design, and includes the following categories:

Routing status

Routing history

Wiring statistics

Summary statistics by layer

In addition to this report, the autorouter creates simplified routing statistics and
displays them in the output window and saves them in a default file, monitor.sts, at
the end of each routing pass.

SPECCTRA automatically updates the status file after every 100 wires are routed.

The default report filename is status.rpt.

See routing status report for explanations and examples of the information contained
in this report.

testpoint

Lists test point summary information such as the number of nets that do not have test
points, the number of test points on each side of the PCB (front and back), the size of
the test point grid, and the current test point spacing and clearance rules. This report
also lists information for each test point, such as location, type, layer, padstack name,
pin or via name, and name of the net the test point is assigned to. It also contains the
measurement units used in the design.

The testpoint report also includes a list of nets that have no testpoint rule in effect,
and also nets that do have a testpoint rule but that SPECCTRA cannot find a test via
site for. Since the testpoint feature is disabled for differential pairs, you can see a list
of missing test points for differential pairs in this report.

The default report filename is tstpt.rpt.

See testpoints report for descriptions of the information contained in this report.

Note

Use the highlight testpoint_violations command to highlight test points that violate
current testpoint rules.

unconnect

Lists all unconnected fromtos by net name. It includes the reference designator, pin
number, and coordinate location for each pin in the fromto.

156

The default report filename is unconn.rpt.

vias

Lists all vias defined in your design file for use during automatic or interactive routing.
The report includes the following information for each via:

• The layers on which the via can reside

• Whether the via is selected for routing

• The bounding box dimension (outline) for the via

• The via image shapes on each layer that define each via

The default report filename is vias.rpt.

report conflict

The report conflict command generates a report that contains information on current
conflicts in the design.

conflict

Lists routing clearance and crossover conflicts and rule violations.

The autorouter checks all routed wires and displays a conflict shape in the graphics
display area. A diamond shape represents a crossover conflict. A rectangular shape
represents a clearance conflict.

You can use the type option to report and display conflicts and rule violations for
routing, placement, or both routing and placement.

The default report filename is conflict.rpt.

type

Identifies the types of conflicts you want to include in the conflict report. The choices
are

place, which lists components that violate placement rules and includes a summary
of the types of violations.

route, which lists wiring conflicts.

all, which lists both placement rule violations and wiring conflicts.

157

This command displays a conflict report in the report window or saves the report in a
text file. The default conflict report contains information on both placement and
routing conflicts. To include placement conflicts or routing conflicts only, use the type
option.

When you generate a conflict report, you can

• Use window to display the report in the report window.

• Use <filename> to save the report to a specific directory with a specific filename.

If you do not include either a filename or the window keyword, SPECCTRA uses the
default filename, conflict.rpt, and saves the report in the design directory. You must
supply a filename to save a report file in a different directory. See file naming
conventions for related information.

Command examples

report conflict
report conflict conflct8.rpt
report conflict (type route)

report network

The report network command generates a report that contains the netlist.

network

Lists net names, number of pins, vias, wires, tjunctions in each net, and Manhattan
versus routed lengths data for each net (including one-pin nets). You can choose the
way these statistics are presented by using the -name, -length, -ratio, or -extra
keywords.

The default report filename is network.rpt.

See network report for descriptions of the information contained in this report.

-name

Sorts the information about the nets alphabetically according to the net name.

-length

Sorts the information about the nets from the highest to the lowest length rule.

-ratio

Sorts the information about the nets from the highest to the lowest ratio of the actual

158

routed length divided by the Manhattan length.

-extra

Sorts the information about the nets from the highest to the lowest difference between
the actual routed length and the Manhattan distance.

This command displays a network report in the report window or saves the report in a
text file.

The default network report sorts net information by name. To sort net information by
length, ratio or extra, use the sorting keywords.

When you generate a network report, you can

• Use window to display the report in the report window.

• Use <filename> to save the report to specific directory with a specific filename.

If you do not include either a filename or the window keyword, SPECCTRA uses the
default filename, network.rpt, and saves the report in the design directory. You must
supply a filename to save a report file in a different directory. See file naming
conventions for related information.

Command examples

report network
report network -length
report network brd1.rpt
report network brd2.rpt -ratio
report network window -extra

report rules

The report rules command generates a report that contains the current design rules.

159

rules

Lists design rules currently in effect or rules that apply at specific precedence levels
of the rule hierarchy that you specify by using the include option. Clearance rules are
listed separately for each object-to-object setting. This report also contains the name
of the design file, the number of signal and power layers, and the size of the via and
wire grids.

The default report filename is rules.rpt.

include

Specifies which rules you want included in the rules report. You can

• List current design rules (all).

• List current design rules that apply at the pcb, layer, class, group_set, net,
group, fromto, class_class, or padstack, region precedence levels of your
design.

For more information about rule precedence, see routing rule hierarchy.

This command displays a rules report in the report window or saves the report in a
text file.

The default rules report contains information on pcb and layer rules only. To include
rules at other levels, use the include option.

When you generate a rules report, you can

• Use window to display the report in the report window.

160

• Use <filename> to save the report to a specific directory with a specific filename.

If you do not include either a filename or the window keyword, SPECCTRA uses the
default filename, rules.rpt, and saves the report in the design directory. You must
supply a filename to save a report file in a different directory. See file naming
conventions for related information.

Command examples

report rules
report rules newrules.rpt
report rules (include class)
report rules (include net group)

route

The route command starts the autorouter.

<passes>

Specifies the number of wiring passes you want the autorouter to run.

Twenty-five passes is usually the suggested minimum.

<start_pass>

Sets a point in the autorouting cost table that the autorouter uses to start the series of
route passes. Typical values are

1, which means the autorouter uses the costing that is used when SPECCTRA
initially routes a design.

6, which means the autorouter uses the costing that is used after the initial five
route passes. The cost of conflicts is relatively low at this point in the cost table.

11, which means the autorouter uses the costing that is used after the initial 10
route passes. The cost of conflicts is moderate at this point in the cost table.

16, which means the autorouter uses the costing that is used after the initial 15
route passes. The cost of conflicts is relatively high at this point in the cost table.

If you do not supply <start_pass>, the autorouter uses a value that is based on the
completion level of the routing.

Do not use the <start_pass> option unless you are an experienced SPECCTRA user.

remove

Creates an unroute when the autorouter tries to reroute a wire and cannot find a new
path, rather than restoring the wire to its original position.

161

Use this option only when the number of failures is greater than 100 and there are
hundreds or thousands of conflicts after 10 or more route passes.

The remove option runs automatically, if the autorouter detects a poor convergence
rate and failures are greater than 50. Nets with a routing priority of 200 or higher are
not ripped up and removed.

You can use the route command at any time except in pause mode. You can use
route without a pass number to run a single autorouting pass, or you can specify a
number of autorouting passes. You use the route command to

• Start the initial autorouting of a PCB

• Specify the number of routing passes

• Specify a starting point (<start_pass>) in the autorouting cost table, which allows
you to restart where you left off in a previous session

• Control whether wires involved in conflicts are removed and left as unroutes

• Constrain the autorouter to route within a certain area of your design

SPECCTRA uses the number of route passes you specify as long as conflicts remain
or connections are unrouted. Once wiring is 100 percent complete with no crossing or
clearance violations, unused route passes are skipped. If there are crosstalk or
maximum and minimum length violations, route passes continue until these violations
are also resolved.

The routing progress indicator monitors and displays the progress of the route
command using a traffic light icon. You can click on the icon to display detailed
information in a dialog box.

If you select one or more connections, the autorouter attempts only those you have
selected. If no connections are selected, the autorouter attempts route or reroute all
connections defined in the network except those that are fixed or protected.

How connections are routed, or how they are ripped up and rerouted, depends on the
number of route passes completed in your current session and whether you include a
<start_pass> value. During the first five route passes in an autorouting session, all
connections are ripped up and rerouted if they are not fixed nets or protected wires.
After the first five passes, the connections that get routed are those that are not
already routed. Wires involved in conflicts, and those close to wires involved in
conflicts, can be ripped up and rerouted if they are not protected.

Use remove to remove wires that are involved in conflicts and leave them as
unroutes. Nets with a routing priority of 200 or higher are not removed by this option.
Connections with high speed rules are automatically assigned a priority greater than
200. The route command uses remove automatically if the autorouter detects a poor
convergence rate and failures are greater than 50.

The autorouter operates as an orthogonal router by default except in areas that
include objects such as staggered pins, where the autorouter can use diagonal
routing. You can change how the route command uses diagonal routing by using the
set command. See set diagonal_mode for more information about controlling
diagonal routing. Choose Contents and Index from the Help menu for more

162

information about using the route command.

See also

bus
fanout
smart_route

Command examples

route 25
route 50 16
route 5 (remove)

rule

The rule command sets routing rules at different precedence levels of the rule
hierarchy.

pcb

Applies routing rules to the design.

You can apply clearance, width, wiring, timing, crosstalk, and noise rules.

layer

Applies routing rules to the specified layer. The <layer_id> is either the name of a
signal layer or power layer defined in the design file, or one or more three possible
keywords (pcb, signal, power).

You can apply clearance, width, wiring, time_factor, crosstalk, noise, noise_weight,
and costing rules.

163

class

Applies routing rules to the specified class. The <class_id> is the name of a class
defined in SPECCTRA or in the design file.

You can apply clearance, width, wiring, timing, shielding, crosstalk, and noise rules.

group_set

Applies routing rules to the specified group set. The <group_set_id> is the name of a
group set defined in SPECCTRA or in the design file.

You can apply clearance, width, and timing rules .

net

Applies routing rules to the specified net. The <net_id> is the name of a net defined in
the design file.

You can apply clearance, width, timing, shielding, crosstalk, and noise rules.

group

Applies routing rules to the specified group. The <group_id> is the name of a group
defined in SPECCTRA or in the design file.

You can apply clearance, width, wiring, timing, shielding, crosstalk, and noise rules .

class_class

Applies routing rules between the specified classes. The <class_id> is the name of a
class defined in SPECCTRA or in the design file.

You can apply clearance, crosstalk, and noise rules.

directional

The directional keyword determines which class is noise transmitter or noise
receiver. Direction is used only for parallel noise descriptors and tandem noise
descriptors. The rule applies to the pair in the order the classes are specified. Do not
use directional when applying crosstalk rules between the wires of a single class.

padstack

Applies routing rules to the specified padstack. The <padstack_id> is the name of a
padstack defined in the design file.

You can apply clearance rules .

region

Applies routing rules to the specified region. The <region_id> is the name of a region
defined in SPECCTRA or in the design file.

You can apply clearance and width rules.

164

selected

Applies routing rules to only the selected nets.

Use the rule command to set design rules for routing. Rules you set in SPECCTRA
override rules set in the design file. See rules overview for general information about
routing rules.

The object keyword determines the rule precedence level of the rules. For a list of the
types of rules that apply to each rule precedence level, see routing rule hierarchy.
Use <routing_rules> to set your rules.

You can use the selected keyword to apply rules to selected nets, but not to selected
fromtos. To add or change fromto rules use the define net or define group
commands.

For class-to-class rules, at least two class ID entries must be supplied. You can

• Apply rules between classes by listing multiple classes, where all classes are
paired with each other.

• Apply rules between specific classes by listing only the two classes to be paired.
You can enter the same class ID twice if you want to apply rules between the nets
of a class.

• Apply parallel noise and tandem noise rules between two classes by listing only
the two classes to be paired. The directional keyword determines which class is
noise transmitter (first class specified) or noise receiver (second class specified).
The directional keyword is used only for the <parallel_noise_descriptor> and the
<tandem_noise_descriptor>.

Rules assigned to a region that have the same coordinates and layer range as an
existing region are merged. Overlapping regions are allowed, but if rules conflict, the
rules of the last defined region are used.

See also the define class_class and define region commands.

Tip

You can se a rule with the define command. For example:

To specify a width rule in the rule command

 rule class class1 (width 600)

To specify a width rule in the define command

 define (class class1 (sig1 sig2 sig3) (rule (width 600)))

Command examples

Click the button () by each example to go to a detailed description and syntax
diagram.

This example sets a limit vias rule for each connection in the design.

 rule pcb (limit_vias 3)

165

This example sets a clearance rule for a layer.

 rule layer S1 (clearance 50 (type smd_to_turn_gap))

This example sets a parallel segment rule for a class.

 rule class critical (parallel_segment (gap 25) (limit 150))

This example sets a parallel segment rule for a group.

 rule group g1 (parallel_segment (gap 25) (limit 150))

This example sets a limit way rule for selected nets.

 rule selected (limit_way 5)

This example sets a via at smd (via_at_smd) rule for the design.

 rule pcb (via_at_smd on (grid on) (fit on))

This example sets noise rules for a class.

 rule class clock (max_noise 400)
 rule class clock (parallel_noise (gap 5) (threshold 50) (weight .04))
 rule class clock (tandem_noise (gap 12) (threshold 50) (weight .01))

This example sets delay rules for a class.

 rule class clock (time_length_factor .51)
 circuit class clock (min_total_delay 1.2)
 circuit class clock (max_total_delay 1.5)

This example sets a width rule for a region.

 rule region region1 (width 10)

This example sets a junction type (junction_type) rule for a group set.

 rule group_set grpset1 (junction_type term_only)

This example sets clearance rules for padstacks.

 rule padstack V25 (clearance 20 (type via_via))
 rule padstack V35 (clearance 25 (type via_via))

This example sets a pin width taper rule for a net.

 rule net wr7 (pin_width_taper up_down)

This example sets a test point rule for all nets in the design.

 rule pcb (testpoint (insert on) (grid 100)

This example sets an interlayer clearance rule between classes.

 rule class_class C1 C2 (inter_layer_clear 3 (type wire_wire wire_pin)
 (layer_depth 2))

This example sets shielding rules for a net.

 rule net wr9 (shield_gap 10)
 rule net wr9 (shield_width 12)
 rule net wr9 (shield_loop open)

This example sets a power fanout rule for all power pins in the design. The fanout

166

command will attempt to connect power pins to decoupling capacitors before
escaping to a via.

 rule pcb (power_fanout (pin_cap_via)

Rules overview

You can use the rule command to do the following:

• Set clearances
• Set interlayer clearances

• Set wire widths
• Control the width of the wire segment entering or exiting a pin

• Set a time conversion factor for wire delay.
• Set a factor to calculate effective wire length by layer and effective via length
• Set the maximum wire length permitted on a mixed layer
• Set a rule that marks a layer as restricted for routing .
• Set the length amplitude and length gap in accordion pattern routing

• Set net ordering to starburst or daisy
• Control use of tjunctions for starburst connections
• Control the maximum stub length and use of tjunctions for daisy chain
connections
• Control tjunction types used in starburst and daisy chain routing

• Set the maximum number of bends permitted in a connection
• Set the maximum number of crossing conflicts permitted in a connection
• Set the maximum number of vias permitted in a connection and vias permitted in
a net
• Set the maximum wrong-way distance permitted in a connection
• Permit interactive creation of redundant wiring on a net

• Set the maximum noise permitted on a net
• Control parallel noise and tandem noise calculations
• Control parallel segments and tandem segments for crosstalk considerations
• Set the minimum length beyond which the effect of noise saturation becomes a
factor in noise calculations

• Control shield gap, shield wire width, and whether shield wire end loops are
formed
• Control the amount by which tandem shields exceed the width of a shielded wire
• Control the distance between shield stub wires

• Control test point insertion during autorouting

• Control power pin fanout order to decoupling capacitors.

167

• Control the use of vias under SMD pads
• Set the via insertion pattern for multi-chip module design to spiral, staggered, or
staired.

<allow_redundant_wiring_descriptor>

The <allow_redundant_wiring_descriptor> sets a rule that allows or disallows
redundant wiring for a net during interactive routing.

When a net has an allow_redundant_wiring rule set to on, and redundant wiring is
enabled in the interactive routing setup, the interactive router can create and leave
wiring loops in the finished connection.

The default for this rule is off.

Notes

This rule is in effect only for interactive routing.

An allow_redundant_wiring rule on a net with daisy ordering is ignored.

<clearance_descriptor>

The <clearance_descriptor> sets a rule that controls clearances between routing
objects in your design.

168

type

Identifies the objects to which you assign a clearance rule.

You can use the special clearance type keywords to specify clearance rules between
objects such as vias attached to the same net (via_via_same_net).

You can use object-to-object clearance type keywords to specify clearances between
two types of objects. The choices are through-pins (pin), SMD pads (smd), vias (via),
routed trace segments (wire), keepout areas or the PCB routing boundary (area),
and test points (testpoint). You must specify any combination of two of these
keywords with an underscore between them.

For example

(type pin_pin)
(type pin_wire)

If you do not specify type, clearance rules apply between all object types.

169

smd_via_same_net

An SMD pad and a via attached to the same net.

via_via_same_net

Vias attached to the same net.

antipad_gap

A pin and the surrounding copper plane.

pad_to_turn_gap

The edge of a pin and the first turn or bend in the wire segment.

smd_to_turn_gap

An SMD pad and the first turn or bend in the wire segment.

buried_via_gap

The gap between vias on different layers. You can use the layer_depth option to
control how many adjacent layers are checked for buried via clearance.

layer_depth

Controls how many adjacent layers (<positive_integer>) are considered when the
autorouter checks buried via clearance.

If the number of layers between vias is larger than specified by <positive_integer>,
the clearance rule does not apply.

Use the clearance rule to set the minimum distance (<positive_dimension>)
permitted between routing objects within the PCB outline.

A value of 0 means the edges of objects can meet. A value of -1 means the rule is not
specified.

Use type to identify the objects to which you assign a clearance rule. You can identify

• Special clearance types with one keyword

• Object-to-object clearance types with separate keywords that are joined by an
underscore character

If you do not specify type, the clearance rule applies to all object types.

For buried_via_gap, you can control how many adjacent layers are checked when
you specify the gap between vias on different layers.

<effective_via_length_descriptor>

The <effective_via_length_descriptor> sets a rule that controls the amount that is
added to wire length calculations by through-vias.

170

Use the effective_via_length rule to set the amount (<positive_dimension>) that is
added to wire length calculations by each through-via.

A value of 0 means length is not added per via. A value of -1 turns off the rule.

<inter_layer_clearance_descriptor>

The <inter_layer_clearance_descriptor> sets a rule that controls clearances between
objects on different layers.

type

Identifies the objects to which you assign an interlayer clearance rule.

You can use object-to-object keywords to specify clearances between two types of
objects. The choices are through-pins (pin), SMD pads (smd), vias (via), routed wire
segments (wire), and keepout areas and the PCB routing boundary (area). You can
use any combination of two object keywords separated by an underscore character.

For example

(type pin_pin)
(type pin_wire)

If you do not specify type, clearance rules apply to all object types.

layer_pair

Controls the layer pair between which interlayer clearance rules apply. You must
specify a layer name (<layer_id>) for each layer in the pair.

The layer_pair control applies at the pcb (global) level of the rule hierarchy only.

layer_depth

Identifies how many adjacent layers (<positive_integer>) are considered when the

171

autorouter applies interlayer clearance rules between objects in one class and those
of another.

The layer_depth control applies at the class-to-class level of the rule hierarchy only.

Use the inter_layer_clearance rule to set the minimum distance
(<positive_dimension>) permitted between objects that do not occupy the same layer.
You identify the objects by using type and object-to-object keywords. If you do not
use type, the interlayer clearance rules apply to all object types.

You control which layers rules apply to by using layer_pair to specify a pair of layers
at the pcb level and layer_depth to the number of adjacent layers at the class-to-
class level. See rule hierarchy for information about rule precedence.

Notes

A common use for interlayer clearance rules is to keep digital nets from crossing
analog nets. You define a class for analog nets and a class for digital nets and assign
a class-to-class interlayer clearance rule with layer_depth control. For example

rule class_class C1 C2 (inter_layer_clear 3 (type wire_wire wire_pin)
 (layer_depth 2))

<junction_type_descriptor>

The <junction_type_descriptor> sets a rule that controls whether tjunctions occur at
pins, pads, vias, and at wire segments.

Use junction_type to control where tjunctions occur. The choices are

term_only, which permits tjunctions at pins, pads, and vias.

supply_only, which permits tjunctions only at pins and pads connected to source-
terminals.

all, which permits tjunctions at pins, pads, and vias, and on wire segments.

For starburst routing, the tjunction rule must be turned on before you use
junction_type. For daisy chain routing, the max_stub rule must be set to a value
greater than 0 before you use junction_type.

Note

Individual pins, wires, and wiring polygons can be defined as source-terminals with
the assign_supply command.

172

<length_amplitude_descriptor>

The <length_amplitude_descriptor> sets a rule that controls the amplitude permitted
in accordion pattern routing.

The length_amplitude rule controls the amplitude permitted in accordion pattern
routing that occurs when wire is added to satisfy a min_length rule. <max_amp> is a
positive_dimension value that sets the maximum amplitude. <min_amp> is an
optional positive_dimension value that sets the minimum amplitude. If a value is not
specified for <min_amp>, the minimum length amplitude defaults to the greater of
three times the wire width or one wire width plus one wire-wire clearance.

A value of 0 for <max_amp> prevents the accordion pattern and forces maze routing
to satisfy a min_length rule. A value of -1 for <max_amp> turns off the accordion
pattern. A value of -1 for <min_amp> returns minimum length amplitude to the default
value.

An example of an accordion pattern is shown in the following figure. See the
length_gap rule for information about controlling distance between accordion
segments.

<length_factor_descriptor>

The <length_factor_descriptor> sets a rule that defines the factor for calculating the
effective length of wires on a layer.

Use length_factor to set a multiplier (<real>) used to calculate the effective length of
wires on a layer. This value must be equal to or greater than 0.

A value of -1 sets the rule to unspecified.

The length factor adjusts wire length calculations by layer. Actual wire lengths are
multiplied by a length factor to derive the effective routed length on a layer.

<length_gap_descriptor>

The <length_gap_descriptor> sets a rule that defines the gap permitted between

173

adjacent folded segments in accordion pattern routing.

The length_gap rule controls the distance or gap (<positive_dimension>) between
adjacent folded segments when wire is added to satisfy a min_length rule with
accordion pattern routing.

This rule is ignored if the <positive_dimension> is equal to or less than the wire-to-
wire clearance rule for the wire segment.

An example of an accordion pattern is shown in the following figure. See the
length_amplitude rule for information about controlling the amplitude permitted in
accordion routing patterns.

<limit_bends_descriptor>

The <limit_bends_descriptor> sets a rule that defines the maximum number of bends
permitted in a connection.

Use the limit_bends rule to control the maximum number (<positive_integer>) of
bends used to route a connection. The positive integer must be a value from 0 to 255.

A value of -1 sets the rule to unspecified, which means the autorouter calculates the
maximum number of bends internally.

<limit_crossing_descriptor>

The <limit_crossing_descriptor> sets a rule that defines the maximum number of
crossing conflicts permitted in a connection.

Use the limit_crossing rule to control the maximum number (<positive_integer>) of
crossing conflicts that are allowed to route a connection. The positive integer must be
a value from 0 to 255.

174

A value of -1 sets the rule to unspecified, which means the autorouter calculates the
maximum number of crossing conflicts internally.

<limit_vias_descriptor>

The <limit_vias_descriptor> sets a rule that defines the maximum number of vias
permitted in a connection.

Use the limit_vias rule to control the maximum number (<positive_integer>) of vias
used to route a connection. The positive integer must be a value from 0 to 255.

A value of -1 sets the rule to unspecified, which means the autorouter calculates the
maximum number of vias internally.

This rule controls the number of vias used in a fromto. See also the max_total_vias
rule for information about controlling the number of vias in a net.

<limit_way_descriptor>

The <limit_way_descriptor> sets a rule that defines the maximum wrong-way distance
permitted in a connection.

Use the limit_way rule to limit the maximum wrong-way distance
(<positive_dimension>) permitted when a connection is routed. The positive
dimension must be correctly scaled for your current measurement units.

A value of 0 prevents any wrong-way routing. A value of -1 sets the rule to
unspecified, which means the autorouter calculates the wrong-way distance
internally.

The wrong-way direction is vertical on horizontal routing layers and horizontal on
vertical routing layers.

Notes

A value of 0 can significantly increase the total number of vias in the design.

<max_noise_descriptor>

The <max_noise_descriptor> sets a rule that controls the maximum noise permitted
on a net.

175

max_noise

Controls the total noise allowed to accumulate on a net.

Use the max_noise rule to identify the maximum noise (<real>) that can accumulate
on a net before a coupled noise violation occurs.

A value of -1 sets the rule to unspecified.

When violations occur, the wires involved in the calculations are rerouted to reduce
the noise below the minimum value. See also the parallel_noise and tandem_noise
rules.

<max_stagger_descriptor>

The <max_stagger_descriptor> sets a rule that controls the maximum wire length
permitted on a mixed layer.

Use the max_stagger rule to set the maximum wire length (<positive_dimension>)
permitted on a mixed layer. The value must be correctly scaled for your current
measurement units.

A value of -1 sets the rule to unspecified, and therefore a connection can be routed
without length restrictions on a mixed layer.

A mixed layer is a power layer that can also be used to route signal connections.

Note

The max_stagger rule should be set at the layer, class layer, net layer, fromto layer,
and group layer levels only.

<max_stub_descriptor>

The <max_stub_descriptor> sets a rule that controls the maximum stub length for
daisy chain connections.

Use the max_stub rule to set the maximum stub length (<positive_dimension>)
allowed on daisy chain connections

176

Stub length is the distance between a pin or via and a tjunction. Stub length is
measured from the center of a pad to the center of the tjunction.

A value of 0 prevents stubs. A value of -1 resets the rule to unspecified.

A stub length greater than 0 permits tjunctions on daisy chain connections. You can
use junction_type to control whether tjunctions can occur on wires or only at pins,
pads, and vias.

<max_total_vias_descriptor>

The <max_total_vias_descriptor> sets a rule that controls the maximum number of
vias permitted in a net.

Use the max_total_vias rule to set the maximum number (<positive_integer>) of vias
that are used to route the net.

A value of -1 sets the rule to unspecified.

You can set this rule for a net, for fromtos in a group, or for nets in a class. If applied
to a class, the rule limits the maximum number of vias for each net in the class, not
the total number of vias for the class.

See also the limit_vias rule for information about controlling the number of vias in a
fromto.

<parallel_noise_descriptor>

The <parallel_noise_descriptor> sets a rule that controls noise calculations between
parallel wires on the same layer.

parallel_noise

Controls whether parallel coupled noise is calculated for parallel wires on the same
layer. The choices are

off turns off the parallel_noise rule, which means parallel coupled noise is not
calculated.

gap turns on the parallel_noise rule and sets the gap, weight, and threshold
values used to calculate parallel coupled noise.

177

Turn off parallel_noise before you set new parallel noise rules.

gap

Sets the edge-to-edge distance (<dimension>) at which parallel or tandem coupled
noise calculations are made.

Coupled noise is calculated for parallel or tandem wires when the edge-to-edge
distance is equal to or less than the specified gap value and the wires are parallel for
a distance that exceeds the threshold value. A negative value for <dimension>
implies overlapping wires.

threshold

Sets the minimum distance (<positive_dimension>) above which parallel wires are
included in parallel or tandem noise calculations.

Coupled noise is calculated for parallel or tandem wires when the wires are parallel
over a distance that exceeds the threshold value, and the edge-to-edge distance is
equal to or less than the specified gap value.

If threshold is not set, the gap value is used for threshold.

weight

Sets the noise transmitted by a net per unit of routed wire length. The noise weight is
used in the cct1 crosstalk model. The value (<real>) must be in electrical units
consistent with the dimensional unit set in SPECCTRA. For example, if coupling
between parallel wires is 2 millivolts per millimeter, weight is set as 2.

Coupled noise is calculated by multiplying parallel lengths by the weight value of the
transmitting net.

Use the parallel_noise rule to control how SPECCTRA calculates coupled noise
specifications between parallel wires on the same layer.

To control coupled noise, you set an edge-to-edge distance (gap) between parallel
wires and a noise weight (weight). The noise weight is used in the cct1 crosstalk
model.

You can also set an optional parallel wire length threshold (threshold). Multiple gap,
threshold, and weight rules can be set to approximate a noise coupling characteristic
that varies as a function of gap and length.

The total accumulated noise on a victim net is compared to Max Noise. Depending
on the setting of the noise accumulation parameter in the set command, this total is
calculated as a linear sum or as the square root of the sum of squares of the noise
contributions of the aggressor nets. The default setting is linear.

SPECCTRA calculates the total noise coupled to the victim net from parallel
transmitting wires by multiplying the parallel length by the weight of each transmitting
wire and accumulating all coupled noise contributions. Depending on the setting of
the noise accumulation parameter in the set command, this total is calculated as a
linear sum or as the square root of the sum of squares of the noise contributions.
(The default setting is linear.) The sum is compared with the net’s maximum noise

178

specification to determine if a violation exists.

Use the max_noise rule to set the maximum noise that each receiving net can
tolerate. When the total coupled noise exceeds the max_noise rule for the net, the
condition is a violation and SPECCTRA reroutes the net to comply with the coupled
noise rule.

See also the tandem_noise rule to control noise coupling between wires on adjacent
signal layers. You can use the parallel_segment rule to control crosstalk by limiting
segments of wire length for a given gap on the same layer. Use the tandem_segment
rule to control crosstalk by limiting segments of wire length for a given gap on
adjacent layers.

<parallel_segment_descriptor>

The <parallel_segment_descriptor> sets a rule that controls segment crosstalk
between nets routed on the same layer.

parallel_segment

Controls whether parallel crosstalk is considered for parallel wire segments on the
same layer. The choices are

off turns off the parallel_segment rule, which means parallel segment crosstalk is
not considered.

gap turns on the parallel_segment rule and sets the gap and limit values used to
consider parallel segment crosstalk.

Turn off parallel_segment before you specify new parallel segment rules.

gap

Sets the minimum edge-to-edge distance, or gap (<dimension>), between parallel
wire segments at which parallel or tandem segment violations occur.

The violations occur when the edge-to-edge distance is equal to or less than the
specified gap value.

When parallel wires are separated by a distance that is less than the gap value, and
the wires are parallel for a distance that exceeds the length limit value, the wires are
rerouted during subsequent routing passes to correct the condition. A negative value
for <dimension> implies overlapping wires.

limit

Sets the maximum distance (<positive_dimension>) that wire segments can be
parallel before a violation can occur.

179

Wire segment lengths equal to or less than the limit value are not considered in
parallel segment and tandem segment violations.

When wires are parallel for a distance that exceeds the length limit value, and the
edge-to-edge distance is equal to or less than the specified gap value, the wires are
rerouted during subsequent routing passes to correct the condition.

Use the parallel_segment rule to control crosstalk between nets routed on the same
layer by limiting the distance wire segments are routed in parallel at a given gap.

To prevent parallel segment violations, you set an edge-to-edge distance (gap) and a
parallel segment length limit (limit). You can set different parallel length limits for
different gaps by using multiple parallel_segment rules.

These rules apply only to individual wire segments and are not cumulative. To route a
net so that the total noise on the net does not exceed a specified limit, see the
parallel_noise rule.

See also the tandem_segment and tandem_noise rules for information about
segment control and noise control between wires on adjacent signal layers.

<pin_width_taper_descriptor>

The <pin_width_taper_descriptor> sets a rule that controls the width of a wire
segment entering or exiting a pin.

Use the pin_width_taper rule to control the width of the wire segment entering or
exiting a pin so that it matches the width of the pin or equals the pcb width rule. The
choices are:

down, which reduces the wire segment.

up, which enlarges the wire segment if no violation to adjacent pins occurs.

up_down, which reduces or enlarges the wire segment as needed.

off, which turns off pin width tapering.

max_length, which limits the length of the tapered portion of the wire.

The default is down.

The pin_width_taper rule matches the connecting segment width of a wire to the pin
width, when wire and pin widths differ. All other segments of the wire obey the width

180

rule that applies to the wire as a whole. No width tapering occurs if it leads to any rule
violations.

The max_length option permits a tapered wire portion that is shorter than the length
of the wire segment connecting to the pin. If you specify a max_length value that is
longer than the connecting wire segment, only the segment entering the pin is
tapered.

<power_fanout_descriptor>

The <power_fanout_descriptor> sets a rule that specifies the fanout routing order
between power pins, vias, and decoupling capacitors.

pin_cap_via

Sets the fanout routing order to fanout from a pin directly to a bypass capacitor before
a via.

pin_via_cap

Sets the fanout routing order to fanout from a pin directly to a via before a bypass
capacitor.

none

Removes the power fanout routing order rule.

Use this rule to control the order in which fanout connects power pins of large
components to decoupling capacitors and vias at the PCB, NET, and CLASS levels.
The rule sets the order to pin-via-cap or pin-cap-via, or removes an existing power
fanout order.

The rule applies only to power nets and to components that are categorized as
follows:

A "large" component must have at least four pins and must have a component
type property of "large".

A decoupling capacitor must have two pins with one pin connected to a voltage
source and the other to ground, and must have a component type property of
"capacitor".

Notes

Power fanout order violations occur when the router cannot follow the order specified
in the rule. You can use the highlight and report commands to discover power
fanout order violations.

181

See also

highlight command

report command

<reorder_descriptor>

The <reorder_descriptor> sets a rule that defines net ordering as starburst or daisy.

starburst

Permits multiple entries and exits on pins.

daisy

Permits only a single entry and a single exit on each pin in the net and does not
allow tjunctions. This is called a simple daisy chain. You can choose mid-driven or
balanced daisy chain routing by using the type option.

type

Controls how a net is ordered for daisy chain routing. The choices are:

mid_driven, where a terminator is placed at each end of the net, and the loads
are added back to a source. If there is more than one source, the sources are
chained together first before the rest of the net is processed.

balanced, where fromtos are daisy-chained and loads are equally distributed
between source and terminator pins. If more than one source pin is defined, the
terminator and load branches are chained back to the closest source pin and the
remaining source pins are ordered as simple daisy chain.

Use the reorder rule to control which method of ordering fromtos in nets is used.
Choose starburst when multiple entries and exits on pins are permitted in your
design (the best routing results are obtained with starburst routing). Choose daisy if
your design requires single exit and entry on pins, and no tjunctions.

When you choose daisy, the net is ordered as a simple daisy chain. You can choose
a type option to control how a net is ordered for daisy chain routing. If you choose
mid_driven, there must be exactly two terminator pins and one or more source pins.
If you choose balanced, loads are equally distributed between source and terminator
pins.

You can control tjunctions in your starburst and daisy chain routing

• For starburst routing, tjunctions are permitted if the tjunction rule is on. You can

182

use the junction_type rule to control whether tjunctions occur at only pins, pads,
and vias, or on wire segments too.

• For daisy chain routing, tjunctions are permitted if the max_stub rule is set to a
value greater than 0. You can use the junction_type rule to control whether
tjunctions occur at only pins, pads, and vias, or on wire segments too.

<restricted_layer_length_factor_descriptor>

The <restricted_layer_length_factor_descriptor> sets a rule that marks a layer as
restricted for routing.

Use the restricted_layer_length_factor rule at the layer, class_layer, or net_layer
precedence level to restrict routing on certain layers for all nets, nets in a certain
class, or specific individual nets, respectively. The rule acts as a switch to identify
layers as restricted. A value of 1 marks a layer as restricted. A value of 0 removes
restrictions from a layer. A value of -1 sets layer restrictions to unspecified. By
default, all layers have a restricted layer length factor of 0.

For example,

rule layer sig1 sig4 (restricted_layer_length_factor 1)

marks layers sig1 and sig4 as restricted. Only nets with a restricted layer rule will be
routed on those layers.

define (class restricted (selected) (layer_rule sig1sig4 (rule /
(restricted_layer_length_factor 1)))

marks the layers as restricted at the class_layer level, meaning that routing
restrictions apply to nets in the class "restricted" on those layers.

Note

Routing on a restricted layer is limited to nets with a restricted layer circuit rule.
Restricted layer circuit rules include the following:

max_restricted_layer_length

<saturation_length_descriptor>

The <saturation_length_descriptor> sets the minimum length beyond which the effect
of noise saturation becomes a factor in noise calculations.

183

The saturation_length rule sets a value for saturation length that is included in noise
calculations. When the total parallel length of a victim and aggressor pair exceeds the
saturation length, the noise calculation scales the total noise by the ratio of the
saturation length to the total parallel length.

This rule applies to parallel and tandem noise calculations at the pcb, class, and net
levels of the rule hierarchy when the cct1a crosstalk model is in use.

Note

SPECCTRA uses the cct1 crosstalk model by default. To make use of the
saturation_length rule, the cct1a crosstalk model must be set. This can occur in either
of two ways:

- in the design file by use of the crosstalk_model keyword in the
<control_descriptor>, (see the SPECCTRA Design Language Reference) or

- by using the set crosstalk_model cct1a command

<shield_gap_descriptor>

The <shield_gap_descriptor> sets a rule that controls the gap between a shield wire
and the signal wires that are being shielded.

Use the shield_gap rule to control the edge-to-edge distance or gap
(<positive_dimension>) permitted between the shield wire and the signal wires being
shielded.

A specified shield_gap takes precedence over an existing wire-to-wire clearance
value. A value of -1 sets the rule to unspecified, and the gap is determined by the
wire-to-wire clearance rule for the signal wires that are being shielded.

<shield_loop_descriptor>

The <shield_loop_descriptor> sets a rule that controls whether shield wires meet in a
closed end loop.

Use the shield_loop rule to control whether shield wire ends meet to enclose the
signal wire they are shielding. The choices are

closed, which means SPECCTRA routes shield wiring with closed end loops

open, which means SPECCTRA routes shield wiring without closing the ends

184

When using open, SPECCTRA usually adds a via to each of the two shield wires to
connect them to the assigned power layer.

The default is closed.

<shield_tie_down_interval_descriptor>

The <shield_tie_down_interval_descriptor> sets a rule that controls the distance
between shield stub wires.

Use the shield_tie_down_interval rule to set the distance (<positive_dimension>)
between stub wires that connect a shield to the ground plane.

A value of -1 sets the rule to unspecified.

<shield_width_descriptor>

The <shield_width_descriptor> sets a rule that controls shield wire width.

Use the shield_width rule to set the width (<positive_dimension>) of the shield wire.

A value of -1 sets the rule to unspecified, and the width is determined by the same
width as the signal wires being shielded.

<spiral_via_descriptor>

The <spiral_via_descriptor> sets a rule that controls autorouter insertion of spiral via
patterns.

min_gap

Sets the minimum horizontal distance between vias in the same pattern on adjacent
layers.

Use the <spiral_via_descriptor> with the rule command to set rules at the PCB, layer,
class, net, group, group set, and fromto levels. This rule is off by default. When the
rule is on, min_gap controls the minimum distance between consecutive vias in the
pattern. If min_gap is not specified, the largest via_via clearance rule in effect
controls the distance on all layers of the pattern.

185

The autorouter connects each via in the pattern at a right angle to the previous via,
resulting in a pattern of vias and connections that form a square if viewed from above.

<stack_via_depth_descriptor>

The <stack_via_depth_descriptor> sets a rule that controls the layer span of stacked
vias.

Use the stack_via_depth rule to control the layer span of stacked blind/buried vias.
The rule applies only at the PCB level of the rule hierarchy and works in conjunction
with the stack_via rule, which enables via stacking. For example, to turn on via
stacking and allow a layer span of 3 layers for stacked vias, you could enter the
following commands.

rule pcb (stack_via on)

rule pcb (stack_via_depth 3)

<stack_via_descriptor>

The <stack_via_descriptor> sets a rule that controls center-on-center via stacking.

Use the stack_via rule to control via stacking. The choices are

on turns on stack_via, which means two vias can be stacked if the terminal points
of the two vias are the same, resulting in a center-to-center stackup.

off turns off stack_via, which means vias cannot be stacked.

The stack_via rule applies at the PCB and layer precedence levels of the rule
hierarchy. For example, to allow overlapping vias in a design, you could enter the
following.

rule pcb (stack_via on)

Note

The stack_via rule enables via stacking. When used in conjunction the
stack_via_depth rule, you can place blind and buried vias at the same location on
different layers.

<staggered_via_descriptor>

The <staggered_via_descriptor> sets a rule that controls autorouter insertion of
staggered via patterns.

186

min_gap

Sets the minimum horizontal distance between vias in the same pattern on adjacent
layers.

max_gap

Sets the maximum horizontal distance between vias in the same pattern on adjacent
layers.

Use the <staggered_via_descriptor> with the rule command to set rules at the PCB,
layer, class, net, group, group set, and fromto levels. This rule is off by default. When
the rule is on, min_gap controls the minimum distance between consecutive vias in
the pattern. If min_gap is not specified, the largest via_via clearance rule in effect
controls the distance on all layers of the pattern.

The autorouter connects each via in the pattern at a 180 degree angle to the previous
via, resulting in a pattern of vias and connections that form a straight line that doubles
back on itself after each via connection.

<staired_via_descriptor>

The <staired_via_descriptor> sets a rule that controls autorouter insertion of staired
via patterns.

min_gap

Sets the minimum horizontal distance between vias in the same pattern on adjacent
layers.

max_gap

Sets the maximum horizontal distance between vias in the same pattern on adjacent
layers.

Use the <staired_via_descriptor> with the rule command to set rules at the PCB,
layer, class, net, group, group set, and fromto levels. This rule is off by default. When
the rule is on, min_gap controls the minimum distance between consecutive vias in
the pattern. If min_gap is not specified, the largest via_via clearance rule in effect
controls the distance on all layers of the pattern.

187

The autorouter proceeds in a single direction to connect each via in the pattern,
resulting in a pattern of vias and connections that form a straight line.

<tandem_noise_descriptor>

The <tandem_noise_descriptor> sets a rule that controls noise calculations between
parallel wires on adjacent signal layers.

tandem_noise

Controls whether parallel coupled noise is calculated for parallel wires on adjacent
signal layers. The choices are

off turns off the tandem_noise rule, which means parallel coupled noise is not
calculated.

gap turns on the tandem_noise rule, and sets the gap, weight, and threshold
values used to calculate parallel coupled noise.

Use tandem_noise off before you specify new rules.

gap

Sets the edge-to-edge distance (<dimension>) at which parallel or tandem coupled
noise calculations are made.

Coupled noise is calculated for parallel or tandem wires when the edge-to-edge
distance is equal to or less than the specified gap value and the wires are parallel for
a distance that exceeds the threshold value. A negative value for <dimension>
implies overlapping wires.

threshold

Sets the minimum distance (<positive_dimension>) above which parallel wires are
included in parallel or tandem noise calculations.

Coupled noise is calculated for parallel or tandem wires when the wires are parallel
over a distance that exceeds the threshold value, and the edge-to-edge distance is
equal to or less than the specified gap value.

If threshold is not set, the gap value is used for threshold.

188

weight

Sets the noise transmitted by a net per unit of routed wire length. The noise weight is
used in the cct1 crosstalk model. The value (<real>) must be in electrical units
consistent with the dimensional unit set in SPECCTRA. For example, if coupling
between parallel wires is 2 millivolts per millimeter, weight is set as 2.

Coupled noise is calculated by multiplying parallel lengths by the weight value of the
transmitting net.

Use the tandem_noise rule to control how SPECCTRA calculates parallel coupled
noise between nets on adjacent signal layers.

To control coupled noise, you set an edge-to-edge distance (gap) between parallel
wires and a noise weight (weight). The noise weight is used in the cct1 crosstalk
model. .

You can also set an optional parallel wire length threshold (threshold). Multiple gap,
threshold, and weight rules can be set to approximate a noise coupling characteristic
that varies as a function of gap and length.

SPECCTRA calculates the total noise coupled to the victim net from tandem
transmitting wires by multiplying the parallel length by the weight of each transmitting
wire and accumulating all coupled noise contributions. Depending on the setting of
the noise accumulation parameter in the set command, this total is calculated as a
linear sum or as the square root of the sum of squares of the noise contributions.
(The default setting is linear.) The sum is compared with the net’s maximum noise
specification to determine if a violation exists.

See the max_noise rule to set the maximum noise that each receiving net can
tolerate. When the total coupled noise exceeds the max_noise rule for the net, the
condition is a violation and SPECCTRA reroutes the net to comply with the coupled
noise rule.

See also the parallel_noise rule to control noise coupling between wires on the same
layer. You can use the parallel_segment rule to control crosstalk by limiting segments
of wire length for a given gap on the same layer. Use the tandem_segment rule to
control crosstalk by limiting segments of wire length for a given gap on adjacent
layers.

<tandem_segment_descriptor>

The <tandem_segment_descriptor> sets a rule that specifies segment crosstalk
control between nets routed on adjacent signal layers.

189

tandem_segment

Controls whether parallel crosstalk is considered for parallel wire segments on
adjacent signal layers. The choices are

off turns off the tandem_segment rule, which means parallel segment crosstalk is
not considered.

gap turns on the tandem_segment rule and sets the gap and limit values used to
consider parallel segment crosstalk.

Turn off tandem_segment before you specify new tandem segment rules.

gap

Sets the minimum edge-to-edge distance, or gap (<dimension>), between parallel
wire segments at which parallel or tandem segment violations occur.

The violations occur when the edge-to-edge distance is equal to or less than the
specified gap value.

When parallel wires are separated by a distance that is less than the gap value, and
the wires are parallel for a distance that exceeds the length limit value, the wires are
rerouted during subsequent routing passes to correct the condition. A negative value
for <dimension> implies overlapping wires.

limit

Sets the maximum distance (<positive_dimension>) that wire segments can be
parallel before a violation can occur.

Wire segment lengths equal to or less than the limit value are not considered in
parallel segment and tandem segment violations.

When wires are parallel for a distance that exceeds the length limit value, and the
edge-to-edge distance is equal to or less than the specified gap value, the wires are
rerouted during subsequent routing passes to correct the condition.

Use the tandem_segment rule to control crosstalk between nets routed on adjacent
signal layers by limiting the lengths of parallel wire segments for a given gap.

To prevent parallel segment violations, you set an edge-to-edge distance (gap) and a
parallel segment length limit (limit). You can set different parallel length limits for
different gaps by using multiple tandem_segment rules.

These rules are applied only to individual wire segments and are not cumulative. To
route a net so that the total noise on the net does not exceed a specified limit, see the
tandem_noise rule.

See also the parallel_segment and parallel_noise rules for information about segment
control and noise control between wires on the same layer.

<tandem_shield_overhang_descriptor>

The <tandem_shield_overhang_descriptor> sets a rule that controls the width of the

190

shield wires generated when a net is routed with a circuit shield rule set to tandem.

Use this descriptor to specify the extra amount added to each side of the tandem
shield wire. Total tandem shield width is two times the tandem_shield_overhang
value plus the width of the wire being shielded. The tandem_shield_overhang value
defaults to the width of the shield wire, resulting in a shield width three times the
shielded wire width.

<testpoint_rule_descriptor>

The <testpoint_rule_descriptor> sets a rule that controls test point insertion during
autorouting.

insert

Controls whether test points are added to routed signal nets. The choices are

on turns on insert, which means that SPECCTRA marks test points and inserts
test point vias.

191

off turns off insert, which means that SPECCTRA does not mark test points and
insert test point vias.

The default is off.

grid

Defines a uniform grid or nonuniform X and Y grids. Grids can be offset. You can

Specify the grid value (<positive_dimension>)

Specify an X or Y direction (direction)

Specify an offset (offset)

If you want a uniform grid, do not specify a direction.

The default test point grid is the current pcb via grid. The grid for test point insertion is
a probing grid that should match your bed-of-nails tester.

direction

Specifies an X or Y grid. If direction is not set, the grid is a uniform X and Y grid.

offset

Specifies an offset (<positive_dimension>) for the X and Y grids.

side

Identifies the test point probing layer as the top (front), bottom (back), or both top
and bottom (both) sides of the PCB.

The probing layer contains exposed test vias (not covered by a component body).

The default is back.

use_via

Identifies one or more via padstacks (<via_id>) to be used as test points.

If no use_via value is specified, the autorouter uses the smallest size via that spans
all layers and is selected for routing.

center_center

Controls the minimum distance (<positive_dimension>) permitted between the
centers of any two test points.

If the center_center rule is different for two test points, the larger value is used.

If no value is given, center-to-center test point checking is not done.

comp_edge_center

Controls the minimum distance (<positive_dimension>) permitted between any test
point center and a component boundary edge.

If no value is given, center-to-component edge checking is not done.

192

image_outline_clearance

Controls the minimum distance (<positive_dimension>) permitted between any test
point edge and a component boundary edge.

The default is the area-to-testpoint object-to-object clearance specified in the
clearance rule.

allow_antenna

Controls whether antennas (stubs) are permitted when test points are added.
Antennas are allowed when this rule is on.

The default is on.

pin_allow

Controls whether through-pins can be used as test points.

When on, you can use comp (<component_id>) to identify a list of components with
through-pins that can be used as test points. If a component list is not included, all
through-pins that meet grid and clearance requirements are used.

The default is off.

max_len

Restricts the routed length of testpoint antennas. The length is measured from a
pad’s origin to the center of the testpoint via.

You can use the testpoint rule to improve PCB testability by adding test points to
routed signal nets. You can assign the testpoint rule by net, class, or for the entire
design (pcb). After you set the rule and during the next route, clean, or filter pass,
SPECCTRA attempts to mark or add a test point to each net identified in the testpoint
rules. For example, a testpoint rule at the pcb level can contain settings, and then
class or net rules can be used to override these settings.

A test point is a through-pin (pin) or via that SPECCTRA marks as a test point
because a testpoint rule is set for the net that contains the pin or via. A test via can
be a plated-through type or a single surface pad. When an exposed via (not covered
by a component body), is not available, SPECCTRA pushes the existing via to an
available test point grid site. If this fails, SPECCTRA adds an additional test point via.

Use the testpoint rule keywords in conjunction with insert on to set the following
controls:

• Specify the grid used for placing test vias. The default is the current PCB via
grid.

• Identify the probing layer side for test points as front, back, or both. You can
specify separate testpoint rules for the front or back sides of the PCB.

• Specify one or more via padstacks to be used as test points. If you do not use
this control, the autorouter chooses a via. Single layer padstacks can be used as
test vias.

193

• Control the minimum center-to-center distance between test points.

• Control the minimum distance between the center of the test point and the
component edge (boundary).

• Control the minimum distance between the edge of the test point and the
component edge (boundary). You can specify only one image_outline_clearance
value.

• Control whether antennas (stubs) are allowed.

• Control whether through-pins are used as test points. You can identify a list of
components with through-pins that can be used as test points. If a component list
is not included, all through-pins that meet the grid and center-to-center
requirements are used.

• Control the maximum length of a connection between a net and an inserted test
point via.

When you set the minimum test point grid, you can specify a uniform grid or
nonuniform X and Y grids. You can specify offsets.

If you change the testpoint rule, and run additional route, clean, or filter passes, all
test points are redefined based on the current rules. For example, if net sig1 is
assigned a test point on the back side and then the testpoint rule is changed to front
side, SPECCTRA removes the back side test point and attempts to find a test point
on the front side after the next route or clean pass. SPECCTRA does not unmark
existing test points for nets where the testpoint rule is set to insert off.

Using the testpoint rule

Usually, you add test points when your design is routed 100 percent or nearly 100
percent. At this stage, the testpoint operation takes advantage of existing vias. A
methodology for using testpoint with the route command in a do file is

• Set all design rules except test point rules
• Run 25 or 50 route passes
• Set test point rules
• Run clean passes
• Run more route passes if necessary
• Run clean passes

For more information about using do files, choose General Information in the Help
menu.

Beginning with the next route, clean, or filter pass, a test point is added on a net
according to the settings you specify in the testpoint rule. For example

• To add a test point on all nets, using a 100 mil grid, enter

unit mil
rule pcb (testpoint (insert on) (grid 100))

• To add a test point on all nets, using a 100 mil grid that is offset by 25 mil, enter

unit mil
rule pcb (testpoint (insert on) (grid 100 (offset 25)))

194

• To add a test point on each net except nets sig1, sig2, and sig3, using a 100 mil
grid, enter

unit mil
rule pcb (testpoint (insert on) (grid 100))
define (class c1 sig1 sig2 sig3)
rule class c1 (testpoint (insert off))

• To add a test point for nets sig1, sig2, and sig3, probed from the back side, using a
100 mil grid; for nets sig4, sig5, and sig6, probed from the front side, using a 200 mil
grid; for net sig7, using the current pcb via grid and probing from either side; and for
net sig8, using a 75 mil via grid and using padstack TP1, enter

unit mil
rule pcb (testpoint (insert off))
define (class back sig1 sig2 sig3)
rule class back (testpoint (insert on) (side back) (grid 100))
define (class front sig4 sig5 sig6)
rule class front (testpoint (insert on) (side front) (grid 200))
rule net sig7 (testpoint (insert on) (side both))
rule net sig8 (testpoint (insert on) (grid 75) (use_via TP1))

Notes

The testpoint command overrides the pcb testpoint_rule. For example, if you enter
testpoint without options, the operation proceeds with the testpoint command
default settings, and ignores any rules set at the pcb level with the testpoint_rule.
Rules set at the higher levels are not affected. To insert test points as a post-
processing operation, use the testpoint command.

The clearance rule controls object-to-object clearances for test points, which are
edge-to-edge clearances. Special clearances, such as center_center and
comp_edge_center are part of the testpoint rule itself and are test point center
checks. Test point center checking is a separate checker pass.

The smart_route command does not activate test point insertion until routing is 80
percent complete. You specify the appropriate testpoint rule settings and then run
smart_route with the auto_testpoint option.

The report testpoint command generates test point summary information. The test
point report includes a list of nets that have no testpoint rule in effect and those that
do have a testpoint rule for which SPECCTRA cannot find a test via site. Since the
test point feature is disabled for differential pairs, you can also see a list of missing
test points for differential pairs in this report.

You can add testpoints to specific nets and wires by using the select net command.

See also the delete command to delete all the test points in a design, including any
dangling wiring left by the deletion of a via.

<time_length_factor_descriptor>

The <time_length_factor_descriptor> sets a rule that defines the time conversion
factor for wire lengths.

195

Use time_length_factor to set a time conversion factor (<real>) for wire lengths. This
factor is a ratio of time per unit length and is used as a multiplier to calculate effective
wire lengths from delay times.

The conversion factor value must be based on the current measurement units, such
as inch or mil and must be consistent with the time units you are using in the design.

You must set a time conversion factor in order for SPECCTRA to follow timing delay
rules. See the circuit command for information about setting timing delay rules.

<tjunction_descriptor>

The <tjunction_descriptor> sets a rule that controls whether tjunctions are permitted
in starburst routing.

Use the tjunction rule to control whether wire tjunctions are permitted in starburst
ordered nets. You can allow tjunctions (on) or prohibit them (off).

When this rule is on, you can use junction_type to control whether tjunctions can
occur on wire segments, or only on pins, pads, and vias, or only on pins and pads
connected to power nets.

<via_at_smd_descriptor>

The <via_at_smd_descriptor> sets a rule that controls whether escape vias are
added under SMD pads.

via_at_smd

Controls whether escape vias are permitted under SMD pads. The choices are

off, which resets a rule to the unspecified state.

on, which permits vias inserted under SMD pads during autorouting.

grid

Controls whether vias inserted under SMD pads are permitted at the pad origin (off)
or at the via grid point that is nearest the pad origin (on).

196

The default is off.

fit

Controls whether vias must completely fit within the SMD pad boundary in order to be
inserted under the pad (on).

The default is off.

Use the via_at_smd rule to control whether escape vias are permitted under SMD
pads. You can specify

• Whether escape vias are inserted at the pad origin or at the grid point nearest
the pad origin

• Whether escape vias must fit within the pad boundary

If vias are permitted under SMD pads, use a via_at_smd rule before using the fanout
command. For example, rather than fanout (pin_type signal) (direction out), use
the commands

rule pcb (via_at_smd on (grid on) (fit on))
fanout (pin_type signal)

The different results of fanout with and without a via_at_smd rule are shown in the
following figure.

<width_descriptor>

The <width_descriptor> sets a rule that controls wire width.

197

Use the width rule to control the width (<positive_dimension>) of wires.

seedvia

The seedvia command breaks a single diagonal connection into two shorter
connections by adding a via.

-force

Adds vias under SMD components on designs with two signal layers.

This command controls the maximum length permitted for diagonal wires.
SPECCTRA breaks up two-pin connections that are longer in both X and Y directions
than the <positive_dimension> you specify.

The seedvia operation adds a single via at a corner of the bounding rectangle for
each connection that satisfies the length criteria. At least one through-via that extends
through all signal layers must be defined in your design in order to use the seedvia
command.

Use -force if you want the seedvia operation to add vias under SMD components
when you route a design with two signal layers.

The default <positive_dimension> is 1.0 inch.

Tip

Usually, the seedvia command is used for large multilayer designs that are expected
to require vias for longer diagonal connections. Because the number of vias can
increase dramatically, dependent on the positive dimension you set, a dimension of
two inches or more is suggested.

Command examples

seedvia 2
seedvia 2.5 -force

select/unselect

The select and unselect commands control which connections, vias, and layers are
available for autorouting operations.

198

group

Selects or unselects groups of fromtos. A group consists of one or more fromtos,
which are pin-to-pin connections.

group_set

Selects or unselects the groups that belong to group sets.

class

Selects or unselects classes of nets. All pins, vias, wires, and guides in the net are
selected or unselected.

net

Selects or unselects nets. All pins, vias, wires, and guides in the net are selected or
unselected. Specify the net name (<net_id>) exactly as used in the design (same
spelling and case).

component

Selects or unselects components. SPECCTRA displays their reference designators.

199

A reference designator is the reference name assigned to a component in the
placement section of the design file.

You can use the type option to control whether wires or nets attached to the
components are also selected or unselected.

type

Controls which objects attached to the components are selected or unselected. The
choices are:

wire, which selects wires attached to pins of the selected or unselected
components.

net, which selects nets attached to pins of the selected or unselected components.
The pins of other components that share the nets, and the vias that interconnect
them, are also selected or unselected.

The default is wire.

layer

Selects or unselects one or more layers to control whether the autorouter routes on a
specific layer. Selection does not affect layer visibility. The layer name (<layer_id>)
accepts the question mark (?) and asterisk (*) wildcard characters.

via

Selects or unselects vias, determining which vias can and cannot be available for
routing.

Selected vias are available for autorouting. If a via is unselected, it cannot be used
unless assigned to a net by a use_via rule in the circuit command.

layer_wires

Selects or unselects all wires on specific layers. Only routed wires on these layers are
selected or unselected. Guides and component pins are not selected or unselected.

pins

Selects or unselects pins, identifying individual component pins that receive fanout
wiring when fanout is initiated. The pin at the other end of the connection is not
fanned out, unless you also select it.

bundle

Selects or unselects net bundles created with the define bundle command.

incomplete_wires

Incomplete wiring in this sense includes:

pin-to-pin connections with a segment missing. Here, “missing” might or might not
include guide wires connecting the other segments.

200

segments that tee into a pin-to-pin connection but end without completing the
connection or end at a guide wire.

segments that start at a pin and end without completing the connection (but
segments that end at vias are presumed to be fanouts or test points and are not
deleted).

wires left dangling by the execution of a delete conflicts -segment command.

shielding

Selects or unselects all shield wires and shield tie downs (stub wires that connect
shield wires to the shield net) on the specified shielded net (<net_id>).

shield_tie_downs

Selects or unselects all routed and unrouted shield tie downs (stub wires that connect
shield wires to the shield net) on the specified shielded net (<net_id>).

unrouted_shield_tie_downs

Selects or unselects all unrouted shield tie downs (stub wires that connect shield
wires to the shield net) on the specified shielded net (<net_id>).

Use these commands to select or unselect routing objects for automatic routing. You
can

• Select or unselect objects to control which connections are routed during an
autorouting operation.

• Select or unselect vias to control whether they are available for a particular
autorouting operation.

• Select or unselect pins to control whether they are available for fanout or
swapping.

• Select or unselect layers to control whether they are available for a particular
autorouting operation.

If you select a layer, the autorouter can use it for routing. If you unselect a layer, the
autorouter cannot use it for routing unless a net or class of nets are assigned to the
unselected layer with a use_layer rule. Nets that are assigned a routing layer with the
use_layer rule are always routed on the assigned layer whether the layer is selected
or unselected.

If there are SMDs in the design, and these components are mounted on an
unselected layer (front or back), the autorouter routes short escape wires and vias on
the unselected layer. See smd_escape in the change command for information
about setting the length of the escape wires.

At the beginning of a SPECCTRA session, all objects except layers and vias are
unselected by default. Initial layer and via selection status for autorouting is based on
<layer_descriptor> and <via_descriptor> entries in the design file.

You can select nets, classes, groups, group sets, or components for use in certain
automatic and interactive routing operations. When nets or fromtos are selected, only

201

these connections are available for autorouting operations. For instance, if you select
one or more nets and use the route command, only these nets are routed. Other
(unselected) objects are not affected. If no nets or fromtos are selected, which means
all objects are unselected, then all objects are available for autorouting operations.

SPECCTRA displays selected objects in the select color, which is yellow if you are
using the default color map.

Command examples

select group G1
select net ABUS??
select class CLKS1 CLKS2
select component U2 (type net)
select layer L1 L4
select via V27
select group_set grpset1
select layer_wires S1 S2
select pins U1-5 U3-6

unselect layer L5 L6
unselect via V50

select/unselect all

The select all and unselect all commands control whether connections attached to
all objects of a particular type, or all vias or layers are available for autorouting
operations.

202

nets

Selects or unselects all nets in the design. All guides, vias, wires, and pins with nets
attached are selected or unselected.

components

Selects or unselects all components on one or both sides of the PCB. You can
specify front or back.

side

Controls whether the current operation applies to the front side (front) or the back
side (back) of the PCB. By default, the operation applies to both sides of the PCB.

groups

Selects or unselects all groups of fromtos. A group consists of one or more fromtos,

203

which are pin-to-pin connections.

group_sets

Selects or unselects groups that belong to all group sets.

layers

Selects or unselects all signal layers defined in the design file. Selecting layers
makes them available for routing and other operations.

vias

Selects or unselects all vias defined in the design file. Selecting a via makes it
available for use during autorouting.

poly_wires

Selects or unselects only wiring polygons. Other wire objects are not affected by this
option.

wires

Selects or unselects all wires, including wiring polygons. All pins, guides, and vias
connected to the wires are also selected or unselected.

shields

Selects or unselects all nets that have assigned shields. All guides, vias, wires, and
pins attached to the nets are also selected.

pairs

Selects or unselects defined differential pairs. All pins, vias, wires, and guides in both
nets of the differential pairs are selected or unselected.

length_rule

Selects or unselects all nets assigned length rules, which includes minimum and
maximum length rules and matched length rules. For a net length rule, the entire net
is selected. For a fromto length rule, only the fromto is selected.

length_error

Selects or unselects all nets with length rule violations, which includes minimum and
maximum length rule violations and matched length rule violations. For a net length
rule violation, the entire net is selected. For a fromto length rule violation, only the
fromto is selected.

unroutes

Selects or unselects guides for all unrouted connections.

pins

Selects or unselects all component pins in the design, on certain layers, or connected

204

to certain nets on one or more layers.

You can select all pins on certain layers by using the layer keyword and specifying
one or more layer names (<layer_id>). You can select all pins connected to certain
nets on a layer by using the net keyword and specifying one or more net names
(<net_id>).

The default is all component pins in the design.

Note

Use this option to specify the component pins you want to receive fanout wiring when
you run the fanout command.

net

Selects or unselects component pins connected to one or more nets (<net_id>).

objects

Selects or unselects all routing and placement objects.

routing

Selects or unselects all routing objects. All components, pins, guides, and vias
connected to the wires are also selected or unselected.

placement

Selects or unselects all placement objects.

bundle

Selects or unselects all net bundles defined in the design file or with the define
bundle command.

Use these commands to select or unselect all objects of a certain type for
autorouting. You can

• Select or unselect all objects of a particular type to control whether connections
attached to those objects are routed during a particular autorouting operation.

• Select or unselect all objects of a particular type and protect them so they
cannot be deleted, ripped up, or rerouted.

• Select or unselect all vias to control whether they are available for a particular
autorouting operation.

• Select or unselect all pins to control whether they are available for fanout and
swapping.

• Select or unselect all layers to control whether they are available for a particular
autorouting operation.

To select or unselect all component pins for fanout on certain layers only, identify one
or more layer names.

205

At the beginning of a SPECCTRA session, all objects are unselected by default.
Layer and via availability for autorouting depends on <layer_descriptor> and
<via_descriptor> entries in the design file.

You can select objects for certain automatic and interactive routing operations. When
objects are selected, only these objects are available for autorouting operations.
Other (unselected) objects are not affected. If no objects are selected, which means
all objects are unselected, then all objects are available for autorouting operations.

SPECCTRA displays selected objects in the select color, which is yellow if you use
the default color map.

Notes

You do not need to issue select all nets before you begin autorouting. If nothing is
selected (default when the design is loaded), all nets are processed by any autorouter
operation. If one or more nets are selected, the autorouter processes only the
selected nets.

Initially, all signal layers (except any layers unselected in the design file) are enabled
for routing and other operations when you start SPECCTRA. You do not need to
issue select all layers unless you want to reverse a prior unselect layer command.

On some layout systems, not all of the vias defined in a design are available for
autorouting. By default, in the SPECCTRA design file, only those vias that are
available for routing in the layout system are selected. Vias identified as spares in a
design file <via_descriptor> are not selected. You can override the design file defaults
by selecting all vias in the design.

If you want to use a particular via that is not the default used by the autorouter, you
can use the commands

unselect all vias
select via <via_id>

The <via_id> is the padstack name for the via you want to use.

Command examples

select all wires
select all poly_wires
select all components (side front)
select all groups
select all group_sets
select all shields
select all pairs
select all length_rule
select all unroutes
select all pins (layer s1 s2)

unselect all nets
unselect all vias
unselect all layers

206

select/unselect all objects

The select all objects and unselect all objects commands select or unselect all routing
objects, placement objects, or both.

objects

Selects or unselects all routing and placement objects.

placement

Selects or unselects all placement objects.

routing

Selects or unselects all routing objects. All components, pins, guides, and vias
connected to the wires are also selected or unselected.

Use these command to select all unselected objects or to unselect all selected
objects. You can select or unselect all placement objects, all routing objects, or both

When you select placement objects, only the selected objects are available for
placement operations. When you select routing objects, only those objects are
available for routing operations.

For general information about using select and unselect commands, see selecting
placement objects.

Command examples

select all placement

unselect all objects

select/unselect area

The select area and unselect area commands select or unselect objects at a specific
location or area.

207

net

Selects or unselects nets that are totally or partially within the defined area. All pins,
wires, and guides attached to the selected nets are also selected or unselected.

wire

Selects or unselects wires that are totally or partially within the defined area. All pins,
vias, and guides attached to the selected wires are also selected or unselected.

poly_wire

Selects or unselects wiring polygons that are totally or partially within the defined
area. All pins, vias, and guides attached to the selected wiring polygons are not
selected or unselected.

guide

Selects or unselects guides within the defined area. Guides are pin-to-pin
connections that are not routed.

pin

Selects or unselects all component pins within the defined area, specifying that these
pins receive fanout wiring when fanout is initiated.

component

Selects or unselects components within the defined area. SPECCTRA displays their
reference designators. A reference designator is the reference name assigned to a
component in the placement section of the design file.

You can use the type option to control whether wires or nets attached to the
components are also selected or unselected.

type

Controls which objects attached to the components are selected or unselected. The
choices are:

208

wire, which selects wires attached to pins of the selected or unselected
components.

net, which selects nets attached to pins of the selected or unselected components.
The pins of other components that share the nets, and the vias that interconnect
them, are also selected or unselected.

The default is wire.

toggle

Switches the selection state of the objects you are selecting within the defined area.
All currently selected objects become unselected, and all currently unselected objects
become selected. Does not affect any objects other than the type you are selecting.

This option is valid with the select area commands but not with the unselect area
commands.

Use these commands to select or unselect objects for autorouting operations. You
can

• Select or unselect an object at a specific location.

• Select or unselect all objects of a particular type within an area.

Use <vertex> to identify the X and Y coordinates of a location or area where you want
to select or unselect objects.

• Specify the coordinates for a point within the bounds of an object that you want
to select or unselect.

• Specify the coordinates for two diagonally opposed corners of a rectangular
area to select or unselect the objects within its boundary.

Use the toggle option to switch the selection state of objects within an area. This
option can be used with the select area command but not with the unselect area
command.

When you select components in an area, you can control whether all wires or all nets
attached to these components are available for autorouting operations.

When you select pins, you can control whether all pins within the area are available
for fanout.

At the beginning of a SPECCTRA session, all objects are unselected by default.

You can select objects for certain automatic and interactive routing operations. When
objects are selected, only these objects are available for autorouting operations.
Other (unselected) objects are not affected. If no objects are selected, which means
all objects are unselected, then all objects are available for autorouting operations.

SPECCTRA displays selected objects in the select color, which is yellow if you are
using the default color map.

Command examples

select area net 1.325 4.350

209

select area net 8.855 5.440 11.75 2.63 toggle
select area component 8.345 5.550
select area component 0.600 0.225 1.025 0.600 (type net)
select area pin 2.25 3.50 3.75 4.25

unselect area wire 8.855 5.440 11.75 2.63
unselect area guide 3.35 .650 1.375 1.9

select/unselect fromto

The select fromto and unselect fromto commands control which fromtos are available
for autorouting operations.

degree

Selects or unselects fromtos located within the specified range of angles. Angles are
measured counterclockwise. The positive dimension must be from 0 to 360 degrees.

area

Selects or unselects the fromto for each pin located within the area defined by two
vertexes.

length

Selects or unselects a fromto if its diagonal length falls between the specified
minimum and maximum length limits.

cross

Selects or unselects fromtos that cross the area defined by two vertexes.

Use these commands to select or unselect all routed fromtos, or fromtos that meet
certain requirements.

Use <degree> to identify a range of angles. You can select or unselect fromtos
located within this range.

Use <vertex> to specify the coordinates for two diagonally opposed corners of a
rectangular area. You can select or unselect fromtos located in this area, or
crossing this area.

Use <min_length> and <max_length> to specify minimum and maximum length
limits. You can select or unselect fromtos with a diagonal length within this range.

210

At the beginning of a SPECCTRA session, all objects are unselected by default.

You can select objects for certain automatic and interactive routing operations. When
objects are selected, only these objects are available for autorouting operations.
Other (unselected) objects are not affected. If no objects are selected, which means
all objects are unselected, then all objects are available for autorouting operations.

SPECCTRA displays selected objects in the select color, which is yellow if you are
using the default color map.

Command examples

select fromto
select fromto (degree 80 100)
select fromto (area 30 65 170 -25) (degree 170 190)
select fromto (length 75 125)
select fromto (cross -100 -72 -20 -72)

unselect fromto
unselect fromto (degree 80 100)

select/unselect pin

The select pin and unselect pin commands select and unselect component pins for
subsequent placement or routing operations.

all pins

Selects or unselects all component pins in the design (by default) or on one or more
specified layers (if you use the layer option).

Wires and guides attached to the selected pins are also selected.

layer

Selects or unselects all component pins on one or more specified signal or power
layers (<layer_id>).

Wires and guides attached to the selected pins are also selected.

pins

Selects or unselects one or more component pins. Wires and guides attached to the
selected pins are also selected.

equivalent

Selects or unselects the specified pins, and their equivalents anywhere in the design.

211

Wires and guides attached to the selected pins are also selected.

Pins are equivalent if they perform the same logical function, whether they have the
same or different names.

These commands select or unselect component pins.

• When you use the all option, you select or unselect all the pins in the design.
You can use the layer option to select all the pins on one or more layers. A
<layer_id> is the name of a signal or power layer defined in the design file.

• When you use the pins option, you select or unselect only the pins you specify
by pin reference. The <pin_reference> consists of the component reference
designator and the pin number of a pin that belongs to the component. You can
use the equivalent option to select both the pins you specify and their equivalents
anywhere in the design.

When you select pins, only the net connections to the selected pins are available for
swap or fanout operations. For general information about using select and unselect
commands, see selecting placement objects.

See also

swap
fanout
select area commands.

See the <part_library_descriptor> in the SPECCTRA Design Language Reference for
information about gate and pin swapping.

Command examples

select pins U1-5 U1-6 U2-4 U2-5

select all pins

select equivalent pins U2-8 U6-3 U23-4

set

The set command controls how layers display, the status file update interval, and
several autorouting options.

There are a variety of conditions you can control by using the set command. You can
set how layers display, the status file update interval, and autorouting options,
including crosstalk model and crosstalk report options.

Some settings require on or off switches, and some require values or option choices.
Use <condition> to set your conditions. See set conditions overview for general
information about controlling conditions with the set command.

212

Notes

SPECCTRA updates the status file after every 100 connections are routed. If you
reduce the interval, routing time increases.

When SPECCTRA loads your design file, all layers are superimposed, and displayed
as one composite image. Alternatives are

• You can display between 1 and 8 layers panels. If you specify more than 8 or if
you enter a value less than 1, graphing defaults to 1.

• Only layers currently selected for viewing are included in the display.

• If you have more than eight layers selected for viewing, the additional layers are
superimposed on the first eight selected layers.

• When graphing is set to 3, 5, or 7, the screen is partitioned into 4, 6, or 8 areas
respectively, although only the number of panels specified are displayed.

• Zoom does not work when graphing is set greater than 1.

When performing same net violation checking, if an ambiguous situation occurs,
SPECCTRA might flag a net as having a violation when no violation exists. Visually
review the violations to make this determination.

The soft fence setting is useful for separating analog and digital signals. When setting
hard and soft fences, remember that hard and soft fences cannot coexist. Either all
fences are hard or all are soft. See also the fence command.

By default, pin width tapering occurs as a post-processing step. To perform pin width
tapering during autorouting, enter set search_tapering on before using routing
commands. For more information about pin width tapering, see the pin_width_taper
rule.

For more information about density analysis, see the density analysis command.

By default, SPECCTRA considers one adjacent signal layer for tandem noise and
segment crosstalk calculations. You can use tandem_depth to control how many
adjacent signal layers are considered, but usually tandem_depth is not set higher
than 2. A <depth> value higher than 1 slows the router.

Command examples

set update_interval 200
set gather_wires off
set graphing 4
set noise_accumulation RSS
set soft_fence on
set same_net_checking on
set search_tapering on
set force_to_terminal_point on
set routability_colors 15
set default_net_coupling friendly
set diagonal_mode on

213

set tandem_depth 2
set dynamic_zoom off
set min_selection on

<condition>

auto_merge_polygon

Use set auto_merge_polygon [on | off] to control automatic polygon merging for
interactive routing.

This condition enables automatic merging of polygons with same properties that are
overlapped during interactive move operations. Wiring polygons are merged only if
they belong to the same net and occupy the same layers. Keepouts are merged only
if they are the same type and on the same layers, and have the same rules. The
choices are

off, which means the polygons are not merged (default)

on, which means the polygons are merged if the polygon merge conditions are
satisfied

For example

set auto_merge_polygon on

average_pair_lengths

The set average_pair_lengths option controls how the routed lengths of paired nets
are calculated for rule checking.

This condition controls whether SPECCTRA considers the average routed length for
the pair when checking timing rules (length and delay). The average length is
calculated by adding the individual lengths of the two wires in the pair, and dividing by
two. The choices are

on, which means check the average length of the paired nets for timing rule
violations.

off, which means check each net independently for timing rule violations.

The default is on.

For example

set average_pair_lengths off

bbv_ctr2ctr

Use set bbv_ctr2ctr [on | off] to control how SPECCTRA measures gap and
stagger distances for blind and buried vias.

This condition controls whether SPECCTRA measures gap and stagger distances
between vias from the via centers (on) or the via edges (off). The default is off.

For example

set bbv_ctr2ctr on

214

Note

Rules affected by this condition include clearance rules with the type
buried_via_gap option. See the rule command for details.

crosstalk_model

Use set crosstalk_model <model_name> to choose the crosstalk model for routing
and rule checking.

This condition controls which crosstalk model is used in crosstalk routing rules. The
<model_name> choices are

cct1, which uses parallel and tandem noise rules to control routing and report
cumulative noise violations on routed nets.

cct1a, which uses parallel and tandem noise rules with noise saturation factors
(see rule <saturation_length_descriptor> for details) to control routing and report
cumulative noise violations on routed nets.

The default is cct1.

For example

set crosstalk_model cct1a

See also

diagonal_mode

Use set diagonal_mode [on | always | off] to control diagonal routing.

This condition controls whether the autorouter uses diagonal routing. The choices are

on, which means the autorouter can route diagonally when it needs to during
diagonal memory routing, through staggered pin arrays, and near existing diagonal
wires. In general, this option does not produce much diagonal routing.

always, which means the autorouter routes every wire with long diagonals,
depending on the amount of available routing space. This option causes the
majority of wires to have diagonals.

off, which means the autorouter never uses diagonal routing and routes only
orthogonal wires.

The default setting is on.

Examples:

set diagonal_mode always

Note

Diagonal routing is generally slower than orthogonal routing. Performance is
degraded particularly if you use set diagonal_mode always. Tough, dense designs
will probably not benefit from this option.

215

dofile_auto_repaint

Use set dofile_auto_repaint [on | off] controls repaints when you run commands
from a do file.

This condition controls whether SPECCTRA repaints the work area after operations
performed by commands in a do file. The choices are

on, which means repaint the work area after operations performed by a do file.

off, which means do not repaint the work area after operations performed by a do
file.

The default is on.

For example

set dofile_auto_repaint on

You can use this control by including it in a do file, entering it in the command entry
area, or clicking View - Dofile Repaints.

Tip

Turning off dofile_auto_repaint affects only operations performed by commands in
do files. If you have turned off this control but you want a do file to repaint the work
area after running a certain command, include the repaint command in the do file.
For example

clean 2
repaint

Notes

You can use the set repaint option to control whether SPECCTRA repaints the work
area after operations you perform with the mouse, by choosing commands from a
menu, or by entering commands in the command entry area.

dynamic_pinswap

Use set dynamic_pinswap [on | off] to control whether SPECCTRA can swap net
pin connections during autorouting operations.

This condition controls whether the autorouter attempts to swap net connections on
pins during route and clean passes. The choices are

on, which permits pin swapping during autorouting operations.

off, which prohibits pin swapping during autorouting operations.

The default is off.

For example

set dynamic_pinswap on

Pin swapping is useful for designs with DIE components, BGA components, or plating
bars. After each pass, the autorouter looks for crossed wires, and attempts to uncross
them by swapping the net pin connections and rerouting the wires.

216

Notes

The necessary package swap information must be translated from your layout system
and included with the component definitions in the SPECCTRA design file.

The autorouter cannot swap pin connections on components after you have changed
their images, added net connections to pins, or removed net connections from pins.
See the change component_image and define net pins commands for details.

Connections on locked pins are not swapped. See the lock command for details.

dynamic_zoom

Use set dynamic_zoom [on | off] to control pan and zoom operations in the work
area.

This condition controls dynamic pan and zoom of the display. The choices are

off, which prevents dynamic panning and zooming. Static pan and zoom remains
available.

on, which enables dynamic panning and zooming.

The default depends on a setting in the specctra.ini file, or on the determined speed
of the workstation.

If there is a specctra.ini file with the [GUI] section setting "AllowDynamicZoom=1", the
initial state is on. If "AllowDynamicZoom=0", the initial state is off. If there is no
AllowDynamicZoom setting in the specctra.ini file, then the default dynamic zoom
setting depends on the estimated speed of the host PC.

edit_abort_uses_undo

Use set edit_abort_uses_undo [on | off] to control whether the interactive router
can undo pushed wires or vias when you cancel a wire edit.

This condition controls whether the interactive router can undo pushed wires and vias
in Edit Route mode when you use the Cancel command in Edit Route popup mode.
The choices are

on means pushed wires and vias are restored to their previous positions before
you started the wire edits you are canceling.

off means pushed wires and vias remain where they were pushed during the edits
you are canceling.

The default is off.

For example

set edit_abort_uses_undo on

force_to_terminal_point

Use set force_to_terminal_point [on | off] to control how wires are routed on pins.

This condition controls whether the autorouter routes to the origin of a pin (on) or to a
point on any part of a pin shape (off). The default is off.

217

For example

set force_to_terminal_point on

gather_wires

Use set gather_wires [on | off] to control how wires connect to differential pairs or
bundles.

This condition controls whether extra wire bends are eliminated when connecting the
wires of a differential pair or a bundle to pins. The choices are

off, which means the extra bends can occur.

on, which means the extra bends are removed.

The default is on.

For example

set gather_wires on

graphing

Use set graphing <positive_integer> to control whether your design is displayed in
split views by layer or in a single composite image.

This condition controls how your design is displayed in the work area. You must
specify the number of layers (<positive_integer>) you want to display separately
(rather than the default composite image where all layers are superimposed). This
value must be a positive integer from 1 to 8. If the value is greater than 8 or less than
1, graphing defaults to 1.

For example

set graphing 4

include_pins_in_crosstalk

Use set include_pins_in_crosstalk [on | off] to control whether pins are considered
in noise calculations.

This condition specifies whether pin shapes are included in the measurements for
calculations that use parallel_noise and tandem_noise rules.

The default is off.

For example

set include_pins_in_crosstalk on

microvia

Use set microvia [on | off] to control the availability of licensed MicroVia features.

This condition controls the availability of MicroVia features at the command line and
in the Graphical User Interface. MicroVia features made available by this set
command require a special license .

Use set microvia on when you plan to incorporate microvias in your design. The
following features become available:

218

Enhanced fanout

This feature provides improved fanout for vias under SMD pads when pads may be
directly opposite each other on opposite sides of the board. See the note in

fanout command

Stacked vias

This feature allows stacking of blind and buried vias at the same location on different
layers, and provides enhanced support for depth control. See

stack_via rule
stack_via_depth rule
stack_via_depth report

Via arrays

This feature provides the capability to define a template for via arrays in the design
file which works with a circuit rule to create via arrays automatically during automatic
routing. Additional features enable interactive modification of via arrays. See

<via_array_template_descriptor> in the Design Language Reference
use_via circuit rule
change via mode
rotate via mode

min_selection

Use set min_selection [on | off] to control area selection of cut segments in a wire.

This condition controls the behavior of the select area wire command to enable
selection of cut segments in a wire. The choices are

on, which limits selection of segments up to the first two-way pseudopin, via, t-
junction, or pin in both directions along the wire. This limits selection to a cut
segment when the cut segment terminates in a two-way pseudopin.

off, which limits selection of segments up to the first via, t-junction, or pin in both
directions along the wire from the selection point. This is the default and normal
select area wire behavior.

Note

A two-way pseudopin exists where a wire segment is cut (cut segment mode) when
the cut_mode_splits_wires option to the set command is on. This option is available
on the Cut Segment Mode [RB] menu.

noise_accumulation

Use set noise_accumulation [| RSS] to control accumulated noise calculations for a
net.

This condition sets the method used for calculating the total noise accumulated on a
net. The choices are

linear, which means the accumulated noise on a victim net is just the simple sum
of the noise contributions of the individual aggressor nets.

219

RSS, which means the accumulated noise on a victim net is the square root of the
sum of the squares of the noise contributions of the individual aggressor nets.

The default is linear.

For example

set noise_accumulation RSS

noise_calculation

Use set noise_calculation [| linear_interpolation] to control noise interpolation
from a user-specified noise table.

This condition sets the interpolation method for a user-specified noise table. The
choices are

stairstep, which means interpolated values are calculated for fixed ranges
between supplied values.

linear_interpolation, which means interpolated values are calculated at exact
points between supplied values.

The default is stairstep.

For example

set noise_calculation linear_interpolation

repaint

Use set repaint [on | off | manual] to control when repaints are performed.

This condition controls when SPECCTRA repaints the work area. The choices are

on, which permits all repaint operations.

off, which prohibits all repaint operations.

manual, which permits repaint operations only when you use the repaint
command or perform a viewing operation such as zoom or pan.

The default is on.

For example

set repaint manual

Note

You can use the dofile_auto_repaint option to control whether SPECCTRA repaints
the work area after operations performed by commands in a do file.

reroute_order_viols

Use set reroute_order_viols [on | off] to control whether the autorouter attempts to
rip up and reroute nets with order violations.

By default after each routing pass, the autorouter the autorouter attempts to reroute
the nets that have order violations. Order violations can occur during autorouting or
when you read a routes file or wire file that contains incorrectly ordered wires. Use

220

set reroute_order_viols off if you want to prevent the autorouter from rerouting the
nets. The default is on.

For example

set reroute_order_viols off

Note

The routing status report lists the number of net order violations for each routing
pass. Use report order_violations to generate a list of order violations. To visually
display the order violations, use setup_check to turn on order rule checking, and run
the check command. You can also use the highlight command to display the order
violations.

When you run check with order rule checking turned on, SPECCTRA reports the
number of net order rule violations in the output window.

rotate_jumper_via

Use set rotate_jumper_via [on | off] to control whether SPECCTRA can rotate
nonsymmetrical jumper vias.

This condition controls whether the autorouter can rotate nonsymmetrical jumper vias
90 degrees if necessary for proper routing of the jumper wires. The choices are

on, which permits jumper via rotation.

off, which prohibits jumper via rotation.

The default is off.

For example

set jumper_via on

roundoff_rotation

Use set roundoff_rotation [on | off] to control how the autorouter calculates pad
rotation coordinates.

This condition controls whether the autorouter rounds off pad locations to the nearest
coordinate when rotating non-circular pads at angles that are not multiples of 90
degrees. The choices are

on, which means the autorouter rounds off the pad locations to the nearest
coordinate.

off, which means the autorouter truncates extra decimal places to calculate the
pad locations.

The default is off.

For example

set roundoff_rotation on

routability_colors

Use set routability_colors <positive_integer> to set the color scale used in the

221

density analysis display.

This condition controls the number of color gradations (<positive_integer>) that are
used in the color scale chart for the density analysis display. This value must be
between 2 and 20, inclusive.

For example

set routability_colors 6

See also the density analysis command.

same_net_checking

Use set same_net_checking [on | off] to control rule checking for clearance
violations between objects on the same net.

This condition controls whether SPECCTRA checks for clearance rule violations
between objects on the same net. A same net clearance rule violation occurs when a
wire segment, via, or pin is too close to another object on the same net.

The choices are

on, which enables checking for clearance rule violations between objects on the
same net.

off, which disables checking for clearance rule violations between objects on the
same net.

The default is off.

For example

set same_net_checking on

Note

The via_via and via_via_same_net clearance rules are always checked and are not
affected by this control.

search_tapering

Use set search_tapering [on | off] to control automatic pin width tapering.

This condition controls whether the autorouter performs pin width tapering during the
autorouting phase (on) or during the post-processing phase (off).

The default is on.

For example

set search_tapering on

shadow_mode

Use set shadow_mode [on | off] to control how selected nets and components are
displayed.

This condition controls whether the SPECCTRA distinguishes selected objects by
displaying them in a special select color (yellow in the default color map) or by
shadowing the colors of unselected objects. The choices are

222

on, which displays selected objects in the select color and unselected objects in
their layer colors

off, which displays selected objects in their layer colors and unselected objects in
a dimmed (shadow) representation of their layer colors.

The default is off.

For example

set shadow_mode on

show_snap_grid_cursor

Use set show_snap_grid_cursor [on | off] to control whether SPECCTRA displays
the snap grid cursor for interactive [LB] modes.

This condition controls the visibility of the snap grid cursor, a small white square that
shows the snap grid point nearest to the pointer) when a snap grid has been defined.
The snap grid cursor appears in Measure mode, Add/Edit Polygon mode, Move
mode, Copy Polygon mode, Cut Segment mode, Cut Polygon mode, and the Draw
modes (Fence, Keepout, Region, Place Boundary, Room, and Ruler). When you
move the pointer closer to a different snap grid point, the snap grid cursor appears
over that grid point. The choices are

on, which displays the snap grid cursor.

off, which hides the snap grid cursor.

The default is on.

For example

set show_snap_grid_cursor off

Note

The color of the snap grid cursor is controlled by the highlight color, which is white in
the default color map.

See also

grid snap

soft_fence

Use set soft_fence [on | off] to control how fences affect autorouting.

This condition controls whether fences are soft (on) or hard (off).

A soft fence causes the autorouter to do the following:

Route all connections inside the soft fence within the fence boundary

Route all connections outside the soft fence outside the fence boundary without
crossing the fence

Ignore the fence for all connections that cross the soft fence

A hard fence causes the autorouter to route only connections that are completely
inside the fence.

223

The default is off.

For example

set soft_fence on

stub_viols_costs

Use set stub_viols_costs [on | off | <positive_integer>] to control how many stubs
the autorouter can route with maximum stub length rule violations.

This condition controls the cost for routing stubs that are longer than the max_stub
rule. The default is on, and the permitted number of stub length violations is set
internally. You can use <positive_integer> to increase this number and improve the
autorouter completion rate. Use off if you do not want to permit stub length rule
violations.

For example

set stub_viols_costs 2

set stub_viols_costs off

Note

The routing status report lists the number of stub length rule violations for each
routing pass. Use report order to generate a list of stub length rule violations.

To visually display the violations, use setup_check to turn on stub rule checking, and
run the check command. You can also use the highlight command to display the
violations.

When you run check with stub rule checking turned on, SPECCTRA reports the
number of stub rule violations in the output window.

swap_fanouts

Use set swap_fanouts [on | off] to control whether SPECCTRA can swap fanout
connections on pins during autorouting operations.

This condition controls whether the autorouter attempts to swap net connections on
pins with fanouts during route and clean passes. The choices are

on, which permits pin swapping of fanouts during autorouting operations.

off, which prohibits pin swapping of fanouts during autorouting operations.

The default is off.

For example

set swap_fanouts on

The autorouter can attempt to swap fanout connections between pins if each pin is
attached to a single, unprotected fanout wire, the wires are not protected and have
the same widths and wiring rules, and the fanout vias have the same via padstacks
and via rules and are not attached to any other wires.

224

Notes

Connections on locked pins are not swapped. See the lock command for details.

The necessary package swap information must be translated from your layout system
and included with the component definitions in the SPECCTRA design file.

The autorouter cannot swap pin connections on components after you have changed
their images, added net connections to pins, or removed net connections from pins.
See the change component_image, and define net pins commands for details.

See also set dynamic_pinswap.

tandem_depth

Use set tandem_depth <positive_integer> to control the layer depth for noise and
crosstalk calculations.

This condition controls the number of adjacent signal layers (<positive_integer>)
considered in tandem noise and segment crosstalk calculations. This setting applies
to tandem_noise and tandem_segment rules. The default is 1. A value less than or
equal to 0 means the default is used.

For example

set tandem_depth 2

Note

An adjacent layer separated by a power layer is not considered even if it falls in the
layer range controlled by the <depth> value.

unknown_user_property_warning

Use set unknown_user_property [on | off] to control whether the unknown property
warning is enabled.

This condition controls whether SPECCTRA issues a warning when you define a user
property by specifying a property name that SPECCTRA does not recognize (on) or
does not issue a warning (off). The default is on.

For example

set unknown_user_property_warning off

update_interval

Use set update_interval <positive_integer> to control how often the status file is
updated when you run the autorouter.

This condition controls the frequency of updates to the status file. You must specify
the number (<positive_integer>) of connections to be routed before SPECCTRA
updates the status file. By default, SPECCTRA automatically updates the status file
after every 100 connections are routed.

For example

set update_interval 200

225

via_to_layer_pattern

Use set via_to_layer_pattern [on | off] to control whether SPECCTRA uses the
layer fill pattern to display vias on a layer.

This condition controls which fill pattern SPECCTRA uses to display vias on a layer.
The choices are

on, which means fill vias with the layer fill pattern.

off, which means fill vias with the via fill pattern specified in the color map.

The default is off.

For example

set via_to_layer_pattern on

write_permission

Use set write_permission (group [read | noread] [write | nowrite]) ([public [read |
noread] [write | nowrite]) to control file read and write permissions when you save
placement or routing information.

This condition sets the group and public permissions on files you save from
SPECCTRA using the write command. The choices are

read or noread, which allows or prohibits others to view or load the file into
SPECCTRA.

write or nowrite which allows or prohibits others to save the file.

The permissions default to your user permissions set in your login account. Changes
you make with the set write_permission command apply only during the current
SPECCTRA session.

Note

The set write_permission command is not available in the Windows version of
SPECCTRA.

Set conditions overview

You can use the set command to set conditions that control

• Autorouting
• Routing with vias
• Rule checking
• Noise and crosstalk calculations
• Interactive routing
• Graphic display features
• Other features

These categories are used here only for convenience. For instance, some of the
autorouting controls also apply to interactive routing, and some of the rule checking
and noise and crosstalk controls also apply to autorouting or interactive routing.

226

For autorouting, you can control

• The update interval of the status file

• Whether the autorouter must route to the origins of pins

• Whether the autorouter gathers the wires of a differential pair or bundle (bus)
before connecting the wires to pins

• Whether the autorouter can dynamically swap net pin connections on
swappable pins

• Whether the autorouter can swap fanout connections on swappable pins

• Whether the autorouter performs pin width tapering during autorouting rather
than during post-processing

• Whether fences are hard or soft

• Whether the autorouter attempts to rip up and reroute nets with order violations

• The cost of routing stubs that are longer than the max_stub length rule

• Whether the autorouter can route diagonal wires always, never, or only when
needed for diagonal memory routing, through staggered pin arrays, and near
existing diagonal wires. .

• Whether the autorouter rounds off calculations for pad location coordinates

For routing with vias, you can control

• Whether the autorouter can rotate nonsymmetrical jumper vias

• How SPECCTRA measures gap and stagger distances for blind and buried vias.

For rule checking, you can control

• Whether same net clearance violations are checked

• Whether average lengths of differential pairs are used for rule checking

For noise and crosstalk calculation, you can control

• Which crosstalk model is used for the crosstalk report

• Whether the calculated total noise accumulated on a victim net is computed as a
simple sum or as the square root of the sum of squares of the noise contributions
from the aggressor nets.

• Whether noise calculations are made using stairstep or linear interpolation

• Whether pin shapes are included in measurements for calculations that use
parallel_noise and tandem_noise rules.

• The number of adjacent signal layers considered in tandem noise and tandem
segment crosstalk calculations

For interactive routing, you can control

• What selection criteria is used for cut wire segments

• Whether the interactive router can automatically merges polygons in Move
mode

227

• Whether the interactive router displays the snap grid cursor in interactive editing
and drawing modes

• Whether the interactive router can undo pushed wires or vias when you cancel a
wire edit in Edit Route mode

For graphic display features, you can control

• How layers display

• How many color gradations are used in the density analysis display

• Whether dynamic pan and zoom are enabled

• Whether shadow mode is used to display selected objects

• Whether the via fill pattern matches the layer fill pattern

• Whether SPECCTRA permits or prohibits all work area repaints, or permits
repaints only after explicit viewing operations (such as zoom, pan, or repaint).

• Whether SPECCTRA performs automatic repaints after operations performed by
commands in a do file.

Other conditions you can control are

• Whether SPECCTRA warns you about a user defined property it does not
recognize

• What permissions are set on files you save from SPECCTRA (on UNIX
platforms only)

• Whether licensed MicroVia features are available at the command line and in
the GUI. (MicroVia features made available by this set command require a special
license).

setexpr

The setexpr command evaluates an expression and stores the result in a variable.

Use the setexpr command to create variables (<variable_name>) by evaluating an
<expression>.

Any variables you create can be used in subsequent setexpr expressions, and in the
evaluate, if and while commands. You can redefine variables by specifying the same
<variable_name> in the setexpr command.

Note

Only user-created variables can be changed with the setexpr command. System
variables are changed only by the autorouter. See <system_variable> in the Design
Language Reference.

Command examples

228

setexpr count (0)
setexpr count (count + 1)

set_focus

The set_focus command controls the focus for alphanumeric keystrokes.

Use the set_focus command to change the focus for alphanumeric keys that have
been assigned a command function. The choices are

window, to perform a command assigned to an alphanumeric key when you move
the pointer into the work area and press the key

command, to perform a command assigned to an alphanumeric key when you
move the pointer into the command entry area and press the key

toggle, to toggle the focus between the work area and the command entry area.

To display a list of currently defined keys, you can use the defkey command or the
Define Keys dialog box in the GUI.

Note

You can use the Tab key to toggle the focus.

Command examples

set_focus window
set_focus command
set_focus toggle

setup_check

The setup_check command sets checking options for the session.

<check_type>

The check types you can specify with the setup_check and check commands are:

Type Defaults to

conflict on
length on
limit_way off
max_vias off

229

miter off
order off
pin off
polygon_wire off
protected off
same_net_check off
stagger off
stub off
use_layer off
use_via off
xtalk (crosstalk) on

By default, the routing checker detects routing conflicts and violations of crosstalk and
length rules. The <check_type> options for this command turn on or turn off these
default settings and several others.

After you use setup_check to turn on the options you want to check and turn off
those you do not want to check, you must use the check command to perform the
rules check.

The checking options you set remain in effect only during the session in which you
set them. They revert to the default settings at the start of each session.

You can override any of the checking options for a single execution of the check
command without using setup_check. See the check command and the include
option for more information.

Note

Checking options that are on by default directly affect the operation of the autorouter
when set to off. For example, the autorouter normally checks for and eliminates
conflicts. If you use the setup_check command and set conflict checking to off, the
router does not eliminate routing conflicts.

See also

check
set

Command examples

setup_check (miter on) (polygon_wire off)

setup_check (use_layer on) (use_via on) (limit_way on) (same_net_check on)

<check_type>

conflict

Checks for shorts and clearance violations.

The default is on.

230

length

Checks for violations of length rules.

The default is on.

limit_way

Checks for violations of the rule command limit_way rule.

The default is off.

max_vias

Controls whether the maximum via rules for nets, classes, groups, and fromtos are
checked. The default setting for this control is off, which means maximum via rules
are not checked. See the rule command for setting max_vias rules.

miter

Checks for unmitered wire corners.

The default is off.

order

Checks routed wiring for violations of the net ordering rules, and highlights violations
in the work area when you run the check command.

Note

You might not want to turn on both order and stub at the same time because the
violations appear similar when highlighted in the work area.

pin

Checks for clearance violations between pins and other objects.

The default is off.

polygon_wire

Checks for clearance violations between wiring polygons and other objects.

The default is off.

protected

Checks for clearance violations between protected wires or vias and other objects.

The default is off.

same_net_check

Checks for clearance rule violations between objects on the same net. A same net
clearance rule violation occurs when a wire segment, via, or pin is too close to
another object on the same net.

231

The default is off.

Note

The via_via and via_via_same_net clearance rules are always checked and are not
affected by this control. Only clearance rules, which are used to prevent unintended
shorts, are checked.

stagger

Checks for violations of the rule command maximum stagger rule.

The default is off.

stub

Checks for violations of the rule command max_stub length rule, and highlights
violations in the work area when you run the check command.

The default is off.

Note

You might not want to turn on both stub and order at the same time because the
violations appear similar when highlighted in the work area.

use_layer

Checks for violations of the circuit command use_layer rule.

The default is off.

use_via

Checks for violations of the circuit command use_via rule.

The default is off.

xtalk

Checks for violations of crosstalk rules.

The default is on.

sh

The sh command runs system-level commands from inside the SPECCTRA GUI.

The sh command lets you use shell commands in UNIX or DOS commands and file
executables in Windows by entering them in the SPECCTRA command entry area.
To enter multiple shell commands, separate the shell commands with a semicolon (;).

232

If you enclose shell commands within parenthesis, you can include SPECCTRA
commands on the same line.

If a command starts another application, you must close the application window
before you can use SPECCTRA. If it does not open a separate window, the
command output goes to the output window.

Notes

A shell command in Windows NT is a command that you can enter at the command
prompt.

Command examples

sh calc
sh ls -l *.w
sh more monitor.sts
sh ps -aux
sh date > routing.note ; vi routing.note
sh uncompress revb.wir.Z
(sh telnet); route 5; clean 2

shield

The shield command automatically routes shield wires around existing wires.

Use the shield command to route shields around unshielded wires of nets that have
a shield rule. This command is useful in cases where you need to shield wires that
contain t-junctions.

Before using the shield command, make sure that there is sufficient clearance
around unshielded wires to route the shield wires. You can do this by increasing the
clearance of these nets before routing them. After those nets have been routed with
extra clearance, restore the previous clearance for those nets and use the shield
command to route the shields. The command routes shields for all nets that have a
shield rule but no shield wire(s).

Notes

If you select wires before using the shield command, the command routes shields
only for the selected wires that have a shield rule.

The shield command does not provide clearance checking. To avoid creating
clearance violations when you use this command, increase the clearance rule for the
nets before you route them initially. Be sure to restore the previous clearance for the
nets after you route them and before you use the shield command.

See also

shield rule for the circuit command

233

shield rules for the rule command:

Command example

The following example routes shields for four nets that will contain t-junctions after
routing. To ensure that there is adequate clearance for the shields, the clearance rule
for the nets is increased before autorouting. The design is then routed. Because the
four nets contain t-junctions, shields are not routed, even though they have a shield
rule. Finally, the nets are selected again; their clearance rule is restored; and the
shield command is executed to add the shields.

select net net1 net2 net3 net4
rule selected (clearance 10)
unselect all
route 25
select net net1 net2 net3 net4
rule selected (clearance 5)
shield

show component_labels

The show component_labels command controls which object identifiers appear
when component labels are turned on for viewing.

type

Controls which identifiers you want to display in the component labels. The choices
are

ref_des displays component reference designators.

cluster_id displays cluster names. Each component in a cluster displays the name
of the cluster.

image_id displays image names.

logical_part_id displays the logical part names for components mapped by the
<logical_part_descriptor> in the design file.

physical_part_id displays the physical part names for components mapped by
the <physical_part_descriptor> in the design file.

234

comp_pin_id displays component reference designators and image pin names.

pin_id displays image pin names.

virtual_pin_id displays virtual pin names.

side

Controls whether the current operation applies only to the front side (front), back side
(back), or both sides (both) of the PCB. The default is both.

Use this command to specify the object identifiers that appear in component labels.
You can display labels for components, component clusters, images, logical parts,
physical parts, pins or virtual pins. You can also control whether to display labels for
components on the front side, the back side, or both sides of the PCB.

The show component_labels command controls only which labels are displayed.
The vset command controls whether labels are visible or hidden. At the beginning of
a session, component labels are hidden by default.

The show component_labels command does not automatically repaint the screen.
Use repaint to update the screen display.

Command examples

vset component_labels on
show component_labels (type ref_des)
repaint

show component_labels (type image_id)
repaint

show component_labels (type comp_pin_id) (side back)
repaint

show component_labels (type physical_part_id) (side front)
repaint

show unroutes

The show unroutes command controls which guides (sometimes called unrouted
connections or unroutes) are displayed.

235

all

Displays all unrouted connections

placed

Displays only those guides that identify unrouted connections to components placed
within the placement boundary.

last

Displays only those guides that identify unrouted connections to the last component
placed during the most recent automatic placement operation.

front

Displays only those guides that identify unrouted connections to components on front
side of PCB.

back

Displays only those guides that identify unrouted connections to components on back
side of PCB.

between

Displays only those guides that identify unrouted connections between pins on the
front side of the PCB and pins on the back side.

selected

Displays only the selected guides or guides connected to the selected components,
wires, nets, or pins.

highlighted

Displays only those guides that are currently highlighted.

Use this command when you want to display only a subset of the guides for unrouted
connections.

Guides can obscure other objects in densely populated designs. By viewing guides
selectively you can reduce the complexity of the display. For example, you can
display just the guides for all placed components, the last component placed,
components on one side of the PCB, or components that are highlighted.

The show unroutes command controls only which guides are displayed. The vset
command controls whether guides are displayed or hidden. At the beginning of a
SPECCTRA session, all guides are displayed by default.

The show unroutes command does not automatically repaint the screen. Use
repaint to update the screen display.

236

Command examples

vset unroutes on
show unroutes placed
repaint

show unroutes highlighted
repaint

show unroutes front
repaint

show unroutes selected
repaint

skill_cmd

The skill_cmd command allows you to issue SKILL commands from the SPECCTRA
command entry area, without changing to SKILL mode (see skill_mode).

Command examples

skill_cmd(printf(“ total components = %d\n” totalcomp))
skill_cmd(load(“~design_macros/sum_comps.il”))

See also

skill_mode
cct_mode

skill_mode

The skill_mode command sets the SPECCTRA command entry area to accept
SKILL programming language commands (SKILL mode). To change the command
entry area to accept SPECCTRA commands, you must issue the cct_mode
command.

After entering the skill_mode command, you can type SKILL commands in the
command entry area. You can also use the SKILL load command to execute a file
with SKILL commands.

The following SPECCTRA system variables are available for use by SKILL.

While executing SKILL commands in SKILL mode, you can use the cct_cmd
command to execute SPECCTRA commands.

Command examples

skill_mode
printf(“ total components = %d\n” totalcomp)
cct_mode

skill_mode
load “~design_macros/sum_comps.il”
cct_mode

237

skill_mode
for (i 0 5{cct_cmd(“z out”)})
cct_mode

See also

cct_cmd
cct_mode
skill_cmd

System variables

The following SPECCTRA system variables are available.

Variable Name Type Definition

bottom_layer_sel Integer 1 if bottom layer is
selected, 0 if not
selected.

complete_wire Number Completion ratio
expressed as a
percentage.

conflict_clearance Integer Number of clearance
rule violations.

conflict_crossing Integer Number of crossing
conflicts.

conflict_wire Integer Number of crossing and
clearance conflicts.

conflict_xtalk Integer Number of crosstalk
rule violations.

connections Integer Total number of
connections to be
routed.

current_wire Integer Current wire being
routed or rerouted.

locked_comp Integer Number of locked
components.

partial_selection Integer Value equals 0 if no
nets or all nets are
selected; value equals 1
when one or more nets
but fewer than all nets
are selected.

placedcomp Integer Number of placed
components.

238

power_layers Integer Number of power
layers.

reduction_ratio Integer Conflicts reduction ratio
from last completed
routing pass.

reroute_wire Integer Number of wires and
wire segments to be
rerouted in the current
pass.

route_pass Integer Current routing pass or
last pass.

sel_comps_list String Names all selected
components.

sel_nets_list String Names of all selected
nets.

sel_signal_layers Integer Number of selected
signal layers.

selectedcomp Integer Number of selected
components.

selectednet Integer Number of selected
nets.

signal_layers Integer Number of signal
layers.

smd_pins Integer Number of SMD pads.

thru_pins Integer Number of through-hole
pins.

top_layer_sel Integer 1 if top layer is selected,
0 if not selected.

total_pass String Total passes for the
current command.

total_pins Integer Total number of pins.

total_vias Integer Total number of vias.

totalcomp Integer Total number of
components on the
PCB.

unconnect_wire String Unconnected wires
(unconnects).

units String Unit of measure set by
user.

unplaced_comp Integer Number of unplaced
components outside the

239

placement boundary.

unplaced_large Integer Number of large
components outside the
placement boundary.

unplaced_small Integer Number of small
components outside the
placement boundary.

smart_route

The smart_route command autoroutes your design based on how your design is
converging.

min_via_grid

Sets the minimum X and Y via grid (<positive_dimension>). You can

Specify a value for only the X or Y axis (direction).

Specify an offset value for the uniform X and Y grid (offset).

The default is the via grid set in the design file.

240

min_wire_grid

Sets the minimum X, Y wire grid (<positive_dimension>). You can

Specify a value for only the X or Y axis (direction).

Specify an offset value for the uniform X and Y grid (offset).

The default is the wire grid set in the design file.

direction

Specifies an X or Y grid. If direction is not set, the grid is a uniform X and Y grid.

offset

Specifies an offset (<positive_dimension>) for the X and Y grids.

auto_fanout

Controls whether the autorouter preroutes SMD pads with a short wire and via. The
choices are

on turns on auto_fanout, which means the autorouter preroutes escape wires and
vias.

off turns off auto_fanout, which means the autorouter does not preroute escape
wires and vias.

The default is on.

auto_fanout_via_share

Controls whether SMD pads on the same net can share escape vias when
auto_fanout is on. The choices are

on turns on auto_fanout_via_share, which means SMD pads can share the
same escape via.

off turns off auto_fanout_via_share, which means SMD pads connect to unique
escape vias.

The default is on.

auto_fanout_pin_share

Controls whether SMD pads can escape to through-pins when auto_fanout is on.
The choices are

on, turns on auto_fanout_pin_share, which means SMD pads can escape to
through-pins if the cost is lower than the cost to use a via.

off turns off auto_fanout_pin_share, which means SMD pads escape to vias
only.

The default is on.

auto_fanout_smd_share

Controls whether the autorouter routes connections between nearby SMD pads on

241

the same net so that they share an escape wire and pin or via when auto_fanout is
on. The choices are

on turns on auto_fanout_smd_share, which means connections between SMD
pads are routed so that they share the same escape wiring if the cost is lower than
the cost to use escape wires and pins or vias for each SMD pad.

off turns off auto_fanout_smd_share, which means each SMD pad connects to
an escape wire and pin or via.

The default is off.

auto_miter

Controls whether the autorouter does mitering after all route, testpoint, and clean
passes are completed. No mitering is done if the routing is not 100 percent. The
choices are

on turns on auto_miter, which means the autorouter changes corners from 90 to
135 degrees.

off turns off auto_miter, which means the autorouter does not change 90 degree
corners.

The default is off.

auto_testpoint

Controls whether the autorouter adds test points. The choices are

on turns on auto_testpoint, which means the autorouter adds test points for
routed signal nets using the side and grid settings.

off turns off auto_testpoint, which means the autorouter does not add test points

The default is off.

side

Identifies the test point probing layer as the top (front), bottom (back), or both top
and bottom (both) sides of the PCB.

The probing layer contains exposed test vias (not covered by a component body).

The default is back.

grid

Defines a uniform grid or nonuniform X and Y grids. Grids can be offset. You can

Specify the grid value (<positive_dimension>)

Specify an X or Y direction (direction)

Specify an offset (offset)

If you want a uniform grid, do not specify a direction.

The default test point grid is the current pcb via grid. The grid for test point insertion is
a probing grid that should match your bed-of-nails tester.

242

direction

Specifies an X or Y grid. If direction is not set, the grid is a uniform X and Y grid.

offset

Specifies an offset (<positive_dimension>) for the X and Y grids.

You can use the smart_route command to evaluate your design and run autorouting
commands that produce the best possible completion. This command adjusts
autorouting based on the conflict reduction rate, the routing completion, the number
of failures, and the number of layers. You can start the smart_route command at any
stage of routing completion.

The routing progress indicator monitors and displays the progress of the smart_route
command using a traffic light icon. You can click on the icon to display detailed
information in a dialog box.

When you use smart_route you can

• Set the minimum via grid and minimum wire grid

• Preroute short escape wires from SMD pads to vias (fanout)

• Change corners from 90 to 135 degrees (miter)

• Add test points

When auto_fanout is on, the fanout operation is activated if there are more than two
signal layers, or if the top or bottom layer is not selected for routing. You can set
controls that allow the autorouter to

• Share escape vias for more than one SMD pad on the same net

• Escape to through-pins if the cost is lower than the cost to use a via

• Route connections between nearby SMD pads so that they share the same
escape wire and pin or via if the cost is lower than the cost to use separate escape
wires, pins or vias

When auto_miter is on, the miter operation is activated after all route, testpoint, and
clean passes are completed. No mitering is done if the routing is not 100 percent.

When auto_testpoint is on, the test point operation is activated when the router
reaches 80 percent completion or at the end of the forced convergence loop. The
forced convergence loop occurs when smart_route adjusts internal costs and
attempts to force convergence (routed 100 percent) by routing small blocks of routing
passes. You can

• Identify the probing layer side as front, back, or both. The probing layer is the
layer on which test vias are exposed (not covered by a component body). You can
specify separate test point rules for the front or back sides of the design.

• Set the grid for test via insertion (should match your bed-of-nails tester).

When you set the minimum via grid, minimum wire grid, or auto test point grid, you
can specify a uniform grid or nonuniform X and Y grid. You can specify offsets.

243

Notes

You can route selected nets with the smart_route command. See also the select
command.

The smart_route command automatically enables the bestsave function, creating a
wires file with the default filename bestsave.w. You can specify a different filename
by using the bestsave command.

For more miter and test point options than are available in auto_miter and
auto_testpoint, see the miter and testpoint rule commands.

See also

fanout
grid commands

Command examples

smart_route
smart_route (min_via_grid 1) (min_wire_grid 1)
smart_route (min_via_grid 5 (direction x)) (min_wire_grid 1 (offset 5))
smart_route (auto_fanout off)
smart_route (auto_miter on)
smart_route (auto_testpoint on (side back) (grid 25))

sort

The sort command controls how connections are scheduled for autorouting.

smart

Sorts unrouted fromtos according to a priority scheme derived from layout
parameters.

random

Sorts unrouted fromtos according to a random, or deliberately chance, order.

length

Sorts unrouted fromtos according to their Manhattan lengths (Dx + Dy). Sorting is
either short-to-long (up) or long-to-short (down).

The default is up.

244

area

Sorts unrouted fromtos by the size of the area that contains the fromtos. Sorting is
either small-to-large (up) or large-to-small (down).

The default is up.

SPECCTRA sorts unrouted fromtos prior to each autorouting pass. You can use the
sort command to specify the sorting method.

If you do not use the sort command, the autorouter uses the smart sorting method.
When you have a large number of long diagonal fromtos, you can force the
autorouter to route them first by using length sorting method with the down keyword
before you run any route commands .

Command examples

sort length down
sort area up

spread

The spread command attempts to add space between wires, and between wires and
pins.

extra

Adds extra wire-to-object clearances. You must specify initial extra clearance
(<begin_extra>). Optionally, you can specify the last extra clearance (<final_extra>)
attempted, which causes spread to function in a progressive mode. These values
must be positive real numbers.

If <final_extra> is not supplied, <begin_extra> is the only value tried.

type

Specifies the object-to-object type that the extra clearance is applied to. The choices
are:

wire_pin, which means wires and through-pins.

wire_wire, which means adjacent wires.

245

wire_smd, which means wires and SMD pads.

keep_notch

Specifies the minimum U-type notch (<positive_dimension>) allowed.

The default dimension is the wire-to-wire clearance value.

The spread command adds extra wire-to-object clearances to improve
manufacturability of a printed circuit board. This command repositions wires to create
extra clearances between wires and pins, wires and SMD pads, and adjacent wire
segments. The spread command does not move or remove vias. If type is not
specified, extra clearances are attempted for all types.

The critic command can remove U-type notches that are sometimes created when
spread adds extra clearance between wires and pins. To retain the extra space (and
not remove the notch) use the keep_notch option.

The spread command does not introduce new conflicts.

If you enter both extra values, and <begin_extra> is smaller than <final_extra>, the
two values are automatically swapped. When you use the spread command without
options it is equivalent to entering the command

spread (extra <begin_extra>)

where <begin_extra> defaults to one-half of the current clearance rule values for
wire_pin, wire_smd, and wire_wire.

When you specify both <begin_extra> and <final_extra>, multiple passes are invoked
that use progressively smaller values to create extra wire-to-object clearances. In this
progressive mode of operation, <begin_extra> is the first extra clearance value
attempted.

After the first pass, the <begin_extra> value is divided by two, and that value is
attempted for the next pass. This process continues until the divide-by-two operation
results in a value equal to or less than <final_extra>, or until five passes elapse. If the
divide-by-two operation results in a value less than <final_extra>, the final pass is
invoked and the <final_extra> clearance value attempted. If after four passes the
divide-by-two result is greater than <final_extra>, that divide-by-two value is used for
a fifth and final pass.

When you use the progressive mode with a wire grid, the grid should be smaller than
the amount of additional clearance you want to add. During the progressive mode, if a
divide-by-two operation results in a value that is smaller than the defined wiring grid
the function terminates.

When just one or two clearance types are specified, spread is applied only to the
specified types. The unspecified type is excluded. Extra clearance values apply only
during the spread operation. When the command finishes, clearance rules revert to
their default or previously specified values.

Use spread after completion of all route and clean passes, and before you use miter
or recorner commands.

Notes

246

The spread command does not follow FST rules.

Command examples

spread
spread (extra 3 (type wire_wire wire_pin))
spread (extra .1)
spread (extra 40 5)
spread (extra 5 (type wire_wire)) (extra 6 (type wire_smd))
 (extra 8 2 (type wire_pin))
spread (keep_notch 12)

status_file

The status_file command redirects the routing status information from the default
monitor.sts file to the filename you specify.

During autorouting operations, SPECCTRA automatically saves status information in
the file monitor.sts in the same directory as the design file. If you want to rename this
file and save it in a different directory, use the status_file command to specify the file
and directory. For general information about file naming, see file naming conventions.

You can also redirect the monitor.sts file by using the -s switch when you start
SPECCTRA.

See also update_interval in the set command.

Command examples

status_file grid1.sts

stop

The stop command terminates a paused autorouting or placement operation.

The stop command terminates an active autorouting or placement operation and
places the system in ready mode. For example, if you start a route pass, you can type
stop to terminate the pass and return to ready mode. This is the same as clicking
Pause, and then clicking Stop in the GUI.

When you issue a routing or placement command from a do file, you can enter stop
and all subsequent commands in the do file are ignored. If the do file is started with
the -do switch when you start SPECCTRA, and you also specify -quit, stop
terminates the autorouter and exits.

You can use the stop command during the following routing operations:

clean
critic

247

fanout
filter
miter
route
smart_route
spread

You can use the stop command during the following placement operations:

autodiscrete
autorotate
form_cluster
initplace
interchange
swap

tax

The tax command applies a factor to adjust the autorouter costs.

way

The cost to route in the wrong direction. For example, the cost of horizontal wire
segments routed on a vertical layer.

cross

The cost of a crossing conflict.

via

The cost to use a via.

off_grid

The cost to enter or exit a pin off grid.

off_center

The cost to enter or exit a pin off center.

248

side_exit

The cost to exit pins on the long side.

squeeze

The cost to create a wire-to-via clearance violation.

layer

The cost to use a layer (<layer_name>) for routing.

249

Use the tax command to control autorouting costs by applying a multiplier (<real>) to
the autorouter’s internal cost parameters. The cost parameters are represented by
the way, cross, via, off_grid, off_center, side_exit, squeeze, and layer keywords.

For example, tax way .9, multiplies the autorouter’s internal wrong-way cost by 0.9.
The autorouter uses this altered value until the internal parameter changes. The
taxing factor is then re-applied to alter the new internal value. You can also control
autorouting costs by using the cost command, but its cost specifications remain fixed
and in effect until you change them.

The default factor value for the tax command is 1. You can reset to this value at any
time.

Both cross and squeeze impact the number of conflicts and the number of
unconnected wires. If squeeze and cross are less than 1.0, the autorouter generates
more conflicts but fewer unconnects. Conversely, if these parameters are greater
than 1.0, the autorouter generates fewer conflicts and potentially more unconnects.

See also the route command.

Note

SPECCTRA maps the multiplier (<real>) you specify for tax layer to an internal
costing curve before applying the command. The valid range for the <real> value is
from 1 to 11. A value greater than 11 is mapped the same as 11. A value less than 1
is ignored.

Command examples

tax cross .9
tax via .8
tax layer S1 1.1

testpoint

The testpoint command controls test point insertion.

250

grid

Defines a uniform grid or nonuniform X and Y grids. Grids can be offset. You can

Specify the grid value (<positive_dimension>)

Specify an X or Y direction (direction)

Specify an offset (offset)

If you want a uniform grid, do not specify a direction.

The default test point grid is the current pcb via grid. The grid for test point insertion is
a probing grid that should match your bed-of-nails tester.

direction

Specifies an X or Y grid. If direction is not set, the grid is a uniform X and Y grid.

offset

Specifies an offset (<positive_dimension>) for the X and Y grids.

side

Identifies the test point probing layer as the top (front), bottom (back), or both top
and bottom (both) sides of the PCB.

The probing layer contains exposed test vias (not covered by a component body).

251

The default is back.

use_via

Identifies one or more via padstacks (<via_id>) to be used as test points.

If no use_via value is specified, the autorouter uses the smallest size via that spans
all layers and is selected for routing.

center_center

Controls the minimum distance (<positive_dimension>) permitted between the
centers of any two test points.

If the center_center rule is different for two test points, the larger value is used.

If no value is given, center-to-center test point checking is not done.

comp_edge_center

Controls the minimum distance (<positive_dimension>) permitted between any test
point center and a component boundary edge.

If no value is given, center-to-component edge checking is not done.

image_outline_clearance

Controls the minimum distance (<positive_dimension>) permitted between any test
point edge and a component boundary edge.

The default is the area-to-testpoint object-to-object clearance specified in the
clearance rule.

allow_antenna

Controls whether antennas (stubs) are permitted when test points are added.
Antennas are allowed when this rule is on.

The default is on.

pin_allow

Controls whether through-pins can be used as test points.

When on, you can use comp (<component_id>) to identify a list of components with
through-pins that can be used as test points. If a component list is not included, all
through-pins that meet grid and clearance requirements are used.

The default is off.

max_len

Restricts the routed length of testpoint antennas. The length is measured from a
pad’s origin to the center of the testpoint via.

252

use_rules

Specifies that the testpoint command follow pcb level test point rules that you set
using the <testpoint_rule_descriptor> in the rule command.

You can use the testpoint command to improve PCB testability by adding test points
to routed signal nets as a post-processing operation.

A test point is a through-pin (pin) or via that SPECCTRA marks as a test point
because a testpoint control is set for the net that contains the pin or via. A test via
can be a plated-through type or a single surface pad. When an exposed via (not
covered by a component body), is not available, SPECCTRA pushes the existing via
to an available test point grid site. If this fails, SPECCTRA adds an additional test
point via.

Use the testpoint command to set the following controls:

• Specify the grid used for placing test vias. The default is the current PCB via
grid.

• Identify the probing layer side for test points as front, back, or both. You can
specify separate testpoint rules for the front or back sides of the PCB.

• Specify one or more via padstacks to be used as test points. If you do not use
this control, the autorouter chooses a via. Single layer padstacks can be used as
test vias.

• Control the minimum center-to-center distance between test points.

• Control the minimum distance between the center of the test point and the
component edge (boundary).

• Control the minimum distance between the edge of the test point and the
component edge (boundary). You can specify only one image_outline_clearance
value.

• Control whether antennas (stubs) are allowed.

• Control whether through-pins are used as test points. You can identify a list of
components with through-pins that can be used as test points. If a component list
is not included, all through-pins that meet the grid and center-to-center
requirements are used.

• Control the maximum length of a connection between a net and an inserted test
point via.

When you set the minimum test point grid, you can specify a uniform grid or
nonuniform X and Y grids. You can specify offsets.

The test point environment is established by the last testpoint command. Any
environment settings established by a previous testpoint command are overridden
by the next command.

Using the testpoint command

You should run the testpoint command after all routing is completed, but before you

253

use clean, spread, and miter commands. When used at this stage, the operation
takes advantage of existing vias.

A common method for achieving improved testability is to escape all SMD pins and
then protect the SMD-to-via connections in order to guarantee that all SMD pins have
a via for testing. This method can be useful for autorouting multilayer designs, but
might be wasteful when compared to the autorouter’s test point method. Consider the
following factors:

• Many extra vias are required for those connections that can otherwise be
completed without a via by wiring directly on the SMD layer.

• When vias are protected, the ability to rip-up, reroute, and eliminate them is lost.

• The ability to route on the SMD layers is constrained by all the protected
connections.

• On a five-pin net, five vias are generated and protected, but only one via is
required per net for a test point.

Notes

To assign test point rules by net, class, or for the entire design, and add the test
points during the next route, clean or filter pass, see the testpoint rule.

If you include the use_rules keyword, the testpoint command follows pcb level test
point rules that you set using the testpoint rule. Otherwise, the testpoint command
overrides test point rules set at the pcb level of the rule hierarchy. For example, if you
enter the testpoint command without options, the operation proceeds with the
testpoint command default settings, and ignores any rules set at the pcb level with
the testpoint rule. Rules set at the higher levels are not affected.

The clearance rule controls object-to-object clearances for test points, which are
edge-to-edge clearances. Special clearances, such as center_center and
comp_edge_center are part of the testpoint command itself and are test point
center checks. Test point center checking is a separate checker pass.

The smart_route command does not activate test point insertion until routing is 80
percent complete. You set the appropriate testpoint controls and then run
smart_route with the auto_testpoint option.

The report testpoint command generates test point summary information. The test
point report includes a list of nets that have no testpoint control in effect and those
that do have a testpoint control for which SPECCTRA cannot find a test via site.
Since the test point feature is disabled for differential pairs, you can also see a list of
missing test points for differential pairs in this report.

You can add testpoints to specific nets and wires by using the select net command.

See also the delete command to delete all the test points in a design, including any
dangling wiring left by the deletion of a via.

Command examples

testpoint
testpoint (side both)
testpoint (grid 0.100) (use_via V1_9 V9) (pin_allow on)

254

testpoint (center_center 0.100)
testpoint (image_outline_clearance 0.050)

If you want to set different test point controls for the front and back of the PCB, use
separate testpoint commands. For example

testpoint (side front) (use_via V1-6 V1-1)
testpoint (side back) (use_via V1-6 V6-6)

unit

The unit command sets your working units.

You can use this command to change your working units at any time during an
autorouting session. Command input, report file output, and display output are always
scaled for the current working units.

The working units are:

• cm (centimeter)
• inch (decimal)
• mil (thousandth of an inch)
• mm (millimeter)
• um (micron)

Command examples

unit mil

unmiter

The unmiter command removes 135 degree wire corners.

You can use the unmiter command to remove all 135 degree wire corners. If you
want this function applied to certain layers only, use layer and specify <layer_id>.
The unmiter command does not remove round corners.

If you created 135 degree corners using the miter command and you must make
engineering changes to your design, you should remove the 135 degree corners by
using unmiter before you save the wires. The autorouter is more efficient when it is
rerouting orthogonal wires. If you saved a wires file before you used miter, you do not
need to use unmiter.

255

See also the miter command.

Command examples

unmiter
unmiter layer L1

view

The view command controls the display of layers in the SPECCTRA work area.

<signal_layer_id>

The name of a signal layer defined in the design file.

<system_layer>

The name of a system layer in SPECCTRA. Each system layer provides a visual
feature such as guides or component labels.

Use the view command when you want to immediately change layer visibility in the
SPECCTRA work area. A <signal_layer_id> is the name of a signal layer defined in
the design file and a <system_layer> is the name of a system layer in SPECCTRA.
Each system layer provides a visual feature such as guides or component labels.

You can specify one or more keywords separated by a space in a single view
command. After using one or more view commands to turn on or turn off signal layers
and system layers, the screen is automatically repainted.

The following keywords represent the system layers that you can view for routing and
placement:

component_labels
error
grid
keepout
origin
pin
power
power_pins
region
site
unroute
via
via_grid
wire

256

If you use view to display component labels or routing guides (unroutes), you can use
the show command to control what kind of labels or guides you want SPECCTRA to
display. You can:

• Use the show component_labels command to display component names
(reference designators), pin IDs, component names with pin IDs, component
cluster names, image names, logical or physical part IDs, or virtual pin IDs.

• Use the show unroutes command to display guides for all unrouted nets, guides
for unrouted signal nets connected to placed or selected components, or guides
for unrouted power nets.

Notes

Additional placement keywords that represent system layers that you can view are:

place_error
place_back
place_front
place_grid

You can control the density, histogram, and force_vector displays by using these
keywords with the view command, or by choosing commands from the Autoplace
menu.

You can also control the viewing options in the Layers panel.

See also

view grid
vset

Command examples

view L2 L3 off
view L2 L3 on
view keepout on
view via on

<system_layer>

component_labels

Displays or hides labels that identify components, pins, virtual pins, images, logical
parts, physical parts, virtual pins, or component clusters, depending on the which
label type you choose with the show component_labels command.

error

Displays or hides routing rule conflict and violation symbols for all visible signal
layers.

grid

Displays or hides the wire grid if defined. You can use the view grid command to

257

control whether the wire grid is displayed as dots or lines.

keepout

Displays or hides keepout areas on all visible signal layers.

origin

Displays or hides component origins (when component outlines are visible) on all
visible signal layers.

pin

Displays or hides component pins (when component outlines are visible) on all visible
signal layers.

power

Displays or hides guides (flight lines) that show unrouted power net connections.

power_pins

Displays or hides power (P) and ground (G) labels on power pins when component
outlines are visible.

region

Displays or hides region boundaries on all visible signal layers.

site

Displays or hides the placement sites of selected images.

unroute

Displays or hides guides (flight lines) that show unrouted pin-to-pin connections.

via

Displays or hides vias for all visible signal layers.

via_grid

Displays or hides the via grid if defined.

wire

Displays or hides routed wires for all visible signal layers.

view grid

The view grid command changes the display of the wire and placement grids.

258

lines

Displays the grid as lines.

dots

Displays the grid as dots.

The grid displays as lines or dots. The default is lines.

See also

grid place
grid_wire_cmd

Command Example

view dots

vset

The vset command presets the layer display in the SPECCTRA work area.

<signal_layer_id>

The name of a signal layer defined in the design file.

<system_layer>

The name of a system layer in SPECCTRA. Each system layer provides a visual
feature such as guides or component labels.

Use the vset command to minimize screen repainting when changing layer visibility in
the SPECCTRA work area. A <signal_layer_id> is the name of a signal layer defined
in the design file and a <system_layer> is the name of a system layer in SPECCTRA.
Each system layer provides a visual feature such as guides or component labels.

You can specify one or more keywords separated by a space in a single vset
command. After using one or more vset commands to turn on or turn off signal layers
and system layers, use the repaint command to update the display in the work area.

The following keywords represent the system layers that you can view for routing and
placement:

component_labels
error
grid
keepout

259

origin
pin
power
power_pins
region
site
unroute
via
via_grid
wire

If you use vset to display component labels or routing guides (unroutes), you can use
the show command to control what kind of labels or guides you want SPECCTRA to
display. You can:

• Use the show component_labels command to display component names
(reference designators), pin IDs, component names with pin IDs, component
cluster names, image names, logical or physical part IDs, or virtual pin IDs.

• Use the show unroutes command to display guides for all unrouted nets, guides
for unrouted signal nets connected to placed or selected components, or guides
for unrouted power nets.

At the beginning of a session, the default for vset component_labels is off and the
default for vset unroutes is on.

Notes

Additional placement keywords that represent system layers that you can view are:

place_error
place_back
place_front
place_grid

You can control the density, histogram, and force_vector displays by using these
keywords with the vset command, or by choosing commands from the Autoplace
menu.

You can also control the viewing options in the Layers panel. The optional system
keyword, in the vset command that appears in the output window when you use the
Layers panel to turn on or turn off a system layer, is used in case a signal layer has
the same name (<signal_layer_id>) as the system layer.

See also

view (placement)
view grid

Command examples

vset L3
repaint

vset wire off
repaint

260

vset L1 L2 on
vset pin on
repaint

<system_layer>

component_labels

Displays or hides labels that identify components, pins, virtual pins, images, logical
parts, physical parts, virtual pins, or component clusters, depending on the which
label type you choose with the show component_labels command.

error

Displays or hides routing rule conflict and violation symbols for all visible signal
layers.

grid

Displays or hides the wire grid if defined. You can use the view grid command to
control whether the wire grid is displayed as dots or lines.

keepout

Displays or hides keepout areas on all visible signal layers.

origin

Displays or hides component origins (when component outlines are visible) on all
visible signal layers.

pin

Displays or hides component pins (when component outlines are visible) on all visible
signal layers.

power

Displays or hides guides (flight lines) that show unrouted power net connections.

power_pins

Displays or hides power (P) and ground (G) labels on power pins when component
outlines are visible.

region

Displays or hides region boundaries on all visible signal layers.

site

Displays or hides the placement sites of selected images.

261

unroute

Displays or hides guides (flight lines) that show unrouted pin-to-pin connections.

via

Displays or hides vias for all visible signal layers.

via_grid

Displays or hides the via grid if defined.

wire

Displays or hides routed wires for all visible signal layers.

while

The while command evaluates <expression> to determine whether commands within
the loop are run. The commands in the loop are repeatedly run until <expression> is
zero.

If <expression> evaluates to a non-zero value, commands within <command_group>
are run. The expression is evaluated again and the cycle is repeated. When
<expression> evaluates to zero (false), the loop terminates.

Be careful to avoid endless loops. Control the loop with a counter, which is
incremented or decremented within the loop and checked at the start of each pass
through the loop.

If you are running a do file and you think the autorouter is in an endless while loop,
you can type stop to terminate the do file. This is the same as clicking the Pause
button and then clicking the Stop button in the GUI.

The internal autorouter variables that can be used with this command are defined
under <system_variable> in the Design Language Reference.

Command examples

route 25
setexpr count (5)
while (count > 0 && conflict_wire > 10)
 (route 10 16
 clean 2
 setexpr count (count -1)
)

clean 2
write wires wires.w

262

wildcard

The wildcard command defines an alternative character to replace the asterisk (*)
character for use as a wildcard when you run commands.

You can use this command when the asterisk (*) character occurs in your design file
as part of a string name such as net name, component ID, image name, layer name,
or padstack name.

Replace <character> with the symbol you want to use instead of asterisk (*). If you
specify a character that is already used in your design, a message popup dialog box
displays with a list of characters you can use.

Avoid using alpha and numeric characters, since they are commonly used in a
design. In addition, do not use parenthesis, and do not use the quote character
defined by string_quote in your design file. The default quote character is the
apostrophe (’).

Command examples

wildcard $
wildcard %

wirebond

The wirebond command places bond sites and routes discrete wires from each site
to the pads of a chip mounted on the PCB.

bond

Places bond sites. You must

• Identify the bond site padstack name (<padstack_id>).

• Specify the maximum distance between the component pad and the bond site
(<max_length>). The max length must be a positive real number.

Use the wirebond command to automatically route the bond sites of a chip
(<component_id>) mounted on your PCB. During the wirebond operation,
SPECCTRA automatically places bond sites based on your selection of padstacks
and specified maximum length rule. SPECCTRA completes the interconnection
required by the netlist.

263

Command examples

wirebond U4 (bond P70 100 P55 150)
wirebond U1 (bond site 3 .175 site 4 .175 site 5 .275 site 6 .275)

write

The write command saves current design data in a text file.

session

Creates a text file that contains the design filename, a history of previous session
files, component placement data, floor plan data, and route data. You can

• Use the comment option to add documentation information to your session file
at the end of the history section.

• Use the include option to include placement information even though you have
not changed your component placements.

The default filename is design.ses.

comment

Adds documentation information (<comment_string>) to your session file at the end
of the history section.

include

Includes placement information even though component placement has not changed

264

when you use the placement keyword.

routes

Creates a text file that contains data for all routed wires and vias, plus additional
information for translating the route data back to the host layout system. You can use
the include option to include guideand test point information in the routes file. Use
the exclude option if you do not want to save virtual pin information in the routes file.
You can use the type option to include protected, unprotected, and selected wires. to
save multiple shape co-linear wire paths as single shape straight wires.

The default filename is design.rte.

wire

Creates a text file that contains data for all routed wires and vias. You can use the
include option to include guideand test point information in the wire file. Use the
exclude option if you do not want to save virtual pin information in the wire file. You
can use the type option to include protected, unprotected, and selected wires to save
multiple shape co-linear wire paths as single shape straight wires.

The default filename is design.w.

include

Use this option to include guide and test point information in the wire or routes file.
The keywords are:

guides, which adds guide information to the wire or routes file so that the host
system can determine the topology used in SPECCTRA for unrouted connections.

testpoints, which adds the <test_points_descriptor> section at the end of the wire
or routes file. See the Design Language Reference for information about the
<test_points_descriptor>.

exclude

Use this option if you do not want to include virtual pin information in the wire or
routes file.

type

Use this option to include data about wires that are protected (protect), unprotected
(unprotect), or selected (select) in the wire or routes file.

network

Creates a text file that contains the network supplied in the design file.

The default filename is design.net.

padstacks

Creates a text file that contains images supplied in the design file.

The default filename is design.pad.

265

conflicts

Creates a text file that contains a list of crossover (cross) and clearance (near)
conflicts.

The default filename is design.cnf.

corner

Creates a text file that contains a list of all corners and arcs in the routing. Corners
listed are 90 and 135 degrees specifically, and all other angles. Arcs are also listed
when round corners are created (requires the appropriate license).

The default filename is design.crn.

Use the write command to save specific routing information in a file that is similar in
format to the design file. You can

• Use session to save routing information in a session file. If you performed
placement in the same session file, you can also save placement information.

• Use routes to save routing information in a routes file. The routes file also
contains information for translating the route data back to the layout system.

• Use wire to save routing information in a wire file.

• Use network, padstacks, conflicts, and corner to save routing information in a
file. You can extract this information by using another software program.

If you do not specify a filename, SPECCTRA supplies a default filename and saves
the file in the design directory. You must specify a filename to save the file in a
different directory. See file naming conventions for further details.

On a UNIX system, you can use the <file_permissions> option to set read and write
permissions on the file.

When you save a session file, you can use the comment option to add a comment to
the file for documentation purposes. The <comment_string> is entered in the file at
the end of the history section.

By default, SPECCTRA includes placement information in a session file only when
you have performed placement operations during the session. You can use the
include placement option if you want to include placement information even though
you have not changed your component placements.

To include guides and test point information in the routes file or wire file, you can use
the include option. To exclude virtual pin information in the routes file or wire file,
click the exclude option. To include wires that are protected, unprotected, or selected
in the routes file or wire file, you can use the type option.

You can also include guide information in the routes file, by inserting (routes_include
guides) in the parser section of the design file. See the Design Language Reference
for more information. Do so only if your translator can parse the guide information in
the routes file.

266

Notes

The session file does not include any definitions or design rules you set or changed
during the session. If you want to save the rules and definitions you applied during
the session, generate a did file, edit it using a text editor, and run it as a do file when
you restart the session.

Command examples

write wires final.w
write routes (include testpoints)
write routes (type protect)
write session (comment new bypass caps added)
write session (permission (group read write) (public read nowrite))
write network

<file_permissions>

The <file_permissions> option controls read and write access for files you save with
the write command on UNIX systems.

permission

Controls whether read and write permissions are set to group access (group) or
public access (public) for files you create with the write command.

group

Sets group access to files and directories. The permissions are read, write, noread,
nowrite.

public

Sets public access to files and directories. The permissions are read, write, noread,
nowrite.

Use <file_permissions> to control read and write access for files you save with the
write command on UNIX systems.

You can set both group or public read and write permissions on files that you own.

If you do not specify <file_permissions>, your default permissions are used when you
save a new file with the write command. If you overwrite a file, the permissions are
unchanged.

267

Note

The owner of a file always has read and write access.

Session file

When you achieve satisfactory placement and routing results, save the information in
a session file before you exit SPECCTRA. You can use this file to

• Restart the session at a later time
• Translate the design back to your layout system.

A session file contains the design filename, a list of previous session files, a list of
other files generated during the session, and the current design status (which can
include placement, floor plan, and routing information, depending on the write
command options you use and the tasks you performed during the session). For
placement, the swap list updates your netlist with the new net-to-pin assignments and
is created only if you performed a swap operation during the session. Floor plan
information consists of cluster and room definitions.

If you use a session file to restart a session, SPECCTRA reads the session file, loads
the design file identified in the session file, loads the placement, floor plan, and
routing information contained in the session file, and applies any swap data contained
in the session file.

Routes file

The routing information in a routes file includes wires and vias. It also includes
information for translating route data back to the layout system. The routes file
includes guides and test point information if you use the include option with the
guides or testpoints keyword. It includes wires that are protected, unprotected, or
selected if you use the type option with the protect, unprotect, and select keyword.
You can use the read routes command to reapply this data, except for type select
data.

Wire file

The routing information in a wire file includes wires and vias data. The wire file
includes guides and test point information if you use the include option with the
guides or testpoints keyword. It includes wires that are protected, unprotected, or
selected if you use the type option with the protect, unprotect, and select keyword.
You can use the read wire command to reapply this data, except for type select data.

write colormap

The write colormap command saves current color map information in a text file.

268

colormap

Creates a text file that contains data that defines colors used in the SPECCTRA work
area and assigns colors and fill patterns to design objects and graphical features.

You can use the form option to create a color map file that uses the current color
pattern settings from the Color Palette dialog box instead of the settings currently in
the SPECCTRA work area.

The default filename is color.std.

form

Specifies that the current color pattern settings from the color palette rather than the
settings currently in the SPECCTRA are used when creating a color map file.

Use the write colormap command to save color map information in a colormap file.

If you do not specify a filename, SPECCTRA supplies a default filename and saves
the file in the design directory. You must specify a filename to save the file in a
different directory. See file naming conventions for further details.

On a UNIX system, you can use the <file_permissions> option to set read and write
permissions on the file.

The colormap file contains data that defines colors used in the SPECCTRA work area
and assigns colors and fill patterns to design objects and graphical features.

To create a color map file that uses the current color pattern settings from the Color
Palette dialog box instead of the settings currently in the SPECCTRA work area, you
can use the form option.

If you do not provide a color map file, SPECCTRA uses colors and patterns defined
and mapped in the design file, or uses internal defaults.

You can use the read colormap to reapply the data in the color map file.

Note

You can use write environment to save the current colormap and key definitions in
your home directory.

Command examples

write colormap
write colormap (form)
write colormap color3.std (permission public nowrite)

269

write environment

The write environment command saves the current SPECCTRA color map, key
definitions, or both in your .cct directory.

environment

Creates text files, in your .cct directory, that contain environment data from the
current session. You can save a color map file (colors), a key definitions file (keys),
or both.

Use the write environment command to save your current color map and key
definitions in text files for use when you start the next session. You can

• Use the colors option to save just the color map.

• Use the keys option to save just the key definitions.

Both the color map and the key definitions are saved by default if you use this
command without either of these options.

On a UNIX system, you can use <file_permissions> options to set read and write
permissions on the file.

SPECCTRA saves the color map in a file named colors and the key definitions in a
file named keys. The files are located in a directory named .cct under your home
directory. If the .cct directory does not exist, SPECCTRA creates it for you.

The location of the .cct directory on Windows systems depends on how certain
environment variables are set.

• On Windows NT systems, the .cct directory is located under the directory defined
by the %homedrive% and %homepath% environment variables. For example

HOMEDRIVE=D
HOMEPATH=\users\myname

SPECCTRA saves the colors and keys files in D:\users\myname\.cct.

• On Windows 95 systems, the .cct directory is located under the Windows directory
(declared in the WINDIR environment variable). For example

WINDIR=c:\win95

SPECCTRA saves the colors and keys files in C:\win95\.cct.

Notes

You can save the color map in a different file or directory using the write colormap
command, and you can load a color map saved in a different file or directory using
the read colormap command.

270

You can save key definitions in a different file or directory using the write keys
command. The key definitions are saved as a series of defkey commands.

When you start SPECCTRA, it looks in your .cct directory for these files and, if either
or both of them exist, loads them before processing any do files that you specified.
Colors or fill patterns defined or assigned in the design file override those definitions
or assignments in the .cct directory colors file.

Use the -noinit startup switch if you want to prevent SPECCTRA from loading the
colors and keys files.

You can use the -c startup switch (or the Color Mapping File option in the Startup
dialog box) to specify a different color map file than the colors file in the .cct directory.
Colors or fill patterns defined or assigned in the file you specify with -c override those
definitions and assignments in the design file.

If you do not use -c, and either you use -noinit or the .cct directory does not contain a
colors file, SPECCTRA looks for a file named color.std in the current directory. If this
file does not exist, SPECCTRA uses color and fill pattern definitions and assignments
in the design file, or internal defaults.

You can use the -do startup switch (or the Do File option in the Startup dialog box) to
load key definitions from a different file when you start a session, or using the do
command to load key definitions from a file any time during a session. Keys defined
in a do file override those key definitions in the .cct directory keys file.

See chapter 2 in the SPECCTRA User Guide for details about using startup options.

Command examples

write environment

write environment (colors)

write environment (permission (group read nowrite)) (keys)

write keys

The write keys command saves key definitions in a text file.

keys

Saves key definitions in a text file that consists of a series of defkey commands.

The default filename is defkey.std.

Use <file_permissions> to control read and write access for files you save with the
write command on UNIX systems.

You can set both group or public read and write permissions on files that you own.

271

If you do not specify <file_permissions>, your default permissions are used when you
save a new file with the write command. If you overwrite a file, the permissions are
unchanged.

Note

The owner of a file always has read and write access.

Use the write keys command to save key definitions in a text file. The text file
consists of a series of defkey commands. It is a do file that you can use to define the
same keys during a future SPECCTRA session.

If you do not specify a filename, SPECCTRA supplies a default filename and saves
the file in the design directory. You must specify a filename to save the file in a
different directory. See file naming conventions for further details.

On a UNIX system, you can use the <file_permissions> option to set read and write
permissions on the file.

Note

Some key definitions that you save in the text file might not be definable if you try to
use them on another system.

You can use write environment to save the current colormap and key definitions in
your home directory.

Command examples

write keys
write keys (permission public nowrite)

	SPECCTRA tools
	Table of Contents
	Overview
	About SPECCTRA Commands
	Command Syntax Conventions
	Conventions Used in This Manual

	Autorouting Command Reference
	assign_pin
	assign_supply
	autosave
	bestsave
	bus
	cct_cmd
	cct_mode
	center
	change
	change_width_by_rule
	check_area
	check
	<check_type>

	circuit
	Circuit rules overview
	<delay_descriptor>
	<length_descriptor>
	<match_fromto_delay_descriptor>
	<match_fromto_length_descriptor>
	<match_group_delay_descriptor>
	<match_group_length_descriptor>
	<match_net_delay_descriptor>
	<match_net_length_descriptor>
	<max_restricted_layer_length_descriptor>
	<priority_descriptor>
	<sample_window_descriptor>
	<shield_descriptor>
	<switch_window_descriptor>
	<total_delay_descriptor>
	<total_length_descriptor>
	<use_layer_descriptor>
	<use_via_descriptor>

	clean
	component_pin_property
	component_property
	<physical_property_descriptor>
	<electrical_value_descriptor>
	<user_property_name>

	cost
	critic
	Define Commands
	define bundle
	define class
	<nets_descriptor>
	<layer_rule_descriptor>
	<topology_descriptor>

	define class_class
	define group
	define group_set
	define keepout
	<rectangle_descriptor>
	<circle_descriptor>
	<polygon_descriptor>

	define layer_noise_weight
	define net
	define padstack
	define pair
	define region
	<fromto_descriptor>
	<virtual_pin_descriptor>
	defkey
	delete
	did_file
	direction
	do
	evaluate
	fanout
	Microvia fanout under SMD pads

	fence
	filter
	fix/unfix
	forget
	<area_descriptor>
	<property_object_descriptor>

	grid route_major_factor
	grid smart
	grid snap
	grid via
	grid via_keepout
	grid wire
	highlight
	if
	image_pin_property
	image_property
	<family_descriptor>
	<physical_property_descriptor>
	<user_property_name>

	layer_property
	license usage
	limit
	miter
	mode
	Interactive routing modes
	Draw modes

	net_property
	order
	protect/unprotect
	quit
	read colormap
	read keepout
	read routes
	read wire
	recorner
	undo/redo
	reduce_padstack
	release license
	repaint
	report
	<report_type>

	report conflict
	report network
	report rules
	route
	rule
	Rules overview
	<allow_redundant_wiring_descriptor>
	<clearance_descriptor>
	<effective_via_length_descriptor>
	<inter_layer_clearance_descriptor>
	<junction_type_descriptor>
	<length_amplitude_descriptor>
	<length_factor_descriptor>
	<length_gap_descriptor>
	<limit_bends_descriptor>
	<limit_crossing_descriptor>
	<limit_vias_descriptor>
	<limit_way_descriptor>
	<max_noise_descriptor>
	<max_stagger_descriptor>
	<max_stub_descriptor>
	<max_total_vias_descriptor>
	<parallel_noise_descriptor>
	<parallel_segment_descriptor>
	<pin_width_taper_descriptor>
	<power_fanout_descriptor>
	<reorder_descriptor>
	<restricted_layer_length_factor_descriptor>
	<saturation_length_descriptor>
	<shield_gap_descriptor>
	<shield_loop_descriptor>
	<shield_tie_down_interval_descriptor>
	<shield_width_descriptor>
	<spiral_via_descriptor>
	<stack_via_depth_descriptor>
	<stack_via_descriptor>
	<staggered_via_descriptor>
	<staired_via_descriptor>
	<tandem_noise_descriptor>
	<tandem_segment_descriptor>
	<tandem_shield_overhang_descriptor>
	<testpoint_rule_descriptor>
	<time_length_factor_descriptor>
	<tjunction_descriptor>
	<via_at_smd_descriptor>
	<width_descriptor>

	seedvia
	select/unselect
	select/unselect all
	select/unselect all objects
	select/unselect area
	select/unselect fromto
	select/unselect pin
	set
	<condition>
	Set conditions overview

	setexpr
	set_focus
	setup_check
	<check_type>

	sh
	shield
	show component_labels
	show unroutes
	skill_cmd
	skill_mode
	System variables

	smart_route
	sort
	spread
	status_file
	stop
	tax
	testpoint
	unit
	unmiter
	view
	<system_layer>

	view grid
	vset
	<system_layer>

	while
	wildcard
	wirebond
	write
	<file_permissions>
	Session file
	Routes file
	Wire file

	write colormap
	write environment
	write keys

